- #1
Philosophaie
- 462
- 0
How do you convert this to Spherical Components?
Spherical Convention = (radial, azimuthal, polar)
##\vec r = |\vec r| * \cos{(\theta)} * \sin{(\phi)} * \hat x +|\vec r| * \sin{(\theta)} * \sin{(\phi)} * \hat y +|\vec r| * \cos{(\phi)} * \hat z##
Is this correct?
##\vec r =\sqrt{(x^2 + y^2 + z^2)} * \hat r + \arctan{(\frac{y}{x})} * \hat \theta + \arccos{(\frac{z}{r})} * \hat \phi##
Spherical Convention = (radial, azimuthal, polar)
##\vec r = |\vec r| * \cos{(\theta)} * \sin{(\phi)} * \hat x +|\vec r| * \sin{(\theta)} * \sin{(\phi)} * \hat y +|\vec r| * \cos{(\phi)} * \hat z##
Is this correct?
##\vec r =\sqrt{(x^2 + y^2 + z^2)} * \hat r + \arctan{(\frac{y}{x})} * \hat \theta + \arccos{(\frac{z}{r})} * \hat \phi##