- #1
gnome
- 1,041
- 1
Will this method always convert a CNF formula to an equivalent DNF formula:
1. negate the ENTIRE formula
2. negate each literal
3. simplify using DeMorgan's laws
For example, given:
[tex]
\begin{equation}
\begin{split}
A:&\quad(p \vee q) \wedge (q \vee r ) \wedge (p \vee r )\notag \\
&\quad\overline{(\overline p \vee \overline q) \wedge (\overline q \vee \overline r) \wedge (\overline p \vee \overline r )}\notag \\
&\quad\overline{(\overline p \vee \overline q)} \vee \overline{(\overline q \vee \overline r)} \vee \overline{(\overline p \vee \overline r )}\notag \\
B:&\quad(p \wedge q) \vee (q \wedge r ) \vee (p \wedge r )\notag \\
\end{split}
\end{equation}
[/tex]
A truth table shows that A and B are equivalent. But is this valid for ANY formula?
1. negate the ENTIRE formula
2. negate each literal
3. simplify using DeMorgan's laws
For example, given:
[tex]
\begin{equation}
\begin{split}
A:&\quad(p \vee q) \wedge (q \vee r ) \wedge (p \vee r )\notag \\
&\quad\overline{(\overline p \vee \overline q) \wedge (\overline q \vee \overline r) \wedge (\overline p \vee \overline r )}\notag \\
&\quad\overline{(\overline p \vee \overline q)} \vee \overline{(\overline q \vee \overline r)} \vee \overline{(\overline p \vee \overline r )}\notag \\
B:&\quad(p \wedge q) \vee (q \wedge r ) \vee (p \wedge r )\notag \\
\end{split}
\end{equation}
[/tex]
A truth table shows that A and B are equivalent. But is this valid for ANY formula?