- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We are given the following point in cylindrical coordinates. We have to write in orthogonal and spherical coordinates.
The point is $\left (2, \frac{\pi}{2}, -4\right )$.
First of all, do orthogonal coordinates mean cartesian coordinates?? (Wondering)
The cylindrical coordinates are of the form $(r, \theta , z)$, that are defined by $x=r \cos \theta , y=r \sin \theta , z=z$.
The orthogonal coordinates are of the form $(x, y, z)$.
$x=r \cos \theta=2 \cos \frac{\pi}{2}=0 , y=r \sin \theta =2 \sin \frac{\pi}{2}=2 , z=z=-4$
So, the orthogonal coordinates of the point are $(0, 2, -4)$.
The spherical coordinates are of the form $(\rho, \theta , \phi)$, where $\rho =\sqrt{x^2+y^2+z^2}, \theta=\arctan \left (\frac{y}{x}\right ), \phi=\arccos \left (\frac{z}{\rho}\right )$.
$\rho=\sqrt{x^2+y^2+z^2}=\sqrt{0^2+2^2+(-4)^2}=2 \sqrt{5}, \theta=\arctan \left (\frac{y}{x}\right )=\arctan \left ( \frac{2}{0}\right ) \Rightarrow \theta=\frac{\pi}{2}, \phi=\arccos \left (\frac{z}{\rho}\right )=\arccos \left (\frac{-4}{2\sqrt{5}}\right )=\arccos \left ( \frac{-2}{\sqrt{5}}\right )$
So, the spherical coordinates of the point are $\left (2 \sqrt{5}, \frac{\pi}{2}, \arccos \left ( \frac{-2}{\sqrt{5}}\right )\right )$.
Is the formulation correct?? (Wondering)
Could I improve something?? (Wondering)
We are given the following point in cylindrical coordinates. We have to write in orthogonal and spherical coordinates.
The point is $\left (2, \frac{\pi}{2}, -4\right )$.
First of all, do orthogonal coordinates mean cartesian coordinates?? (Wondering)
The cylindrical coordinates are of the form $(r, \theta , z)$, that are defined by $x=r \cos \theta , y=r \sin \theta , z=z$.
The orthogonal coordinates are of the form $(x, y, z)$.
$x=r \cos \theta=2 \cos \frac{\pi}{2}=0 , y=r \sin \theta =2 \sin \frac{\pi}{2}=2 , z=z=-4$
So, the orthogonal coordinates of the point are $(0, 2, -4)$.
The spherical coordinates are of the form $(\rho, \theta , \phi)$, where $\rho =\sqrt{x^2+y^2+z^2}, \theta=\arctan \left (\frac{y}{x}\right ), \phi=\arccos \left (\frac{z}{\rho}\right )$.
$\rho=\sqrt{x^2+y^2+z^2}=\sqrt{0^2+2^2+(-4)^2}=2 \sqrt{5}, \theta=\arctan \left (\frac{y}{x}\right )=\arctan \left ( \frac{2}{0}\right ) \Rightarrow \theta=\frac{\pi}{2}, \phi=\arccos \left (\frac{z}{\rho}\right )=\arccos \left (\frac{-4}{2\sqrt{5}}\right )=\arccos \left ( \frac{-2}{\sqrt{5}}\right )$
So, the spherical coordinates of the point are $\left (2 \sqrt{5}, \frac{\pi}{2}, \arccos \left ( \frac{-2}{\sqrt{5}}\right )\right )$.
Is the formulation correct?? (Wondering)
Could I improve something?? (Wondering)
Last edited by a moderator: