- #1
VinnyCee
- 489
- 0
Another problem that I cannot figure out. Convert the follorwing into polar coordinates:
[tex]\int_{-1}^{1} \int_{-\sqrt{1 - y^2}}^{\sqrt{1 - y^2}} ln\left(x^2 + y^2 + 1\right) dx\;dy[/tex]
I did this so far:
[tex]ln\left(x^2 + y^2 + 1\right) = ln\left(r^2 + 1\right)[/tex]
[tex]\sqrt{1 - y^2} = \sqrt{1 - r^2 \sin^2 \theta}[/tex]
Now what do I do?
Is this possibly right?
[tex]\int_{0}^{2\pi} \int_{-\sqrt{1 - r^2 \sin^2 \theta}}^{\sqrt{1 - r^2 \sin^2 \theta}} ln\left(r^2 + 1\right) dr\;d\theta[/tex]
[tex]\int_{-1}^{1} \int_{-\sqrt{1 - y^2}}^{\sqrt{1 - y^2}} ln\left(x^2 + y^2 + 1\right) dx\;dy[/tex]
I did this so far:
[tex]ln\left(x^2 + y^2 + 1\right) = ln\left(r^2 + 1\right)[/tex]
[tex]\sqrt{1 - y^2} = \sqrt{1 - r^2 \sin^2 \theta}[/tex]
Now what do I do?
Is this possibly right?
[tex]\int_{0}^{2\pi} \int_{-\sqrt{1 - r^2 \sin^2 \theta}}^{\sqrt{1 - r^2 \sin^2 \theta}} ln\left(r^2 + 1\right) dr\;d\theta[/tex]
Last edited: