- #1
blalien
- 32
- 0
Homework Statement
Given Cartesian coordinates x, y, and polar coordinates r, phi, such that
[tex]r=\sqrt{x^2+y^2}, \phi = atan(x/y)[/tex] or
[tex]x=r sin(\phi), y=r cos(\phi)[/tex]
(yes, phi is defined differently then you're used to)
I need to find [tex]\frac{d\phi}{dr}[/tex] in terms of [tex]\frac{dy}{dx}[/tex]
Homework Equations
All given in part 1
The Attempt at a Solution
I tried to compute [tex]\frac{d \phi}{d r}[/tex] directly and ended up with this:
[tex]\frac{d \phi}{d r} = \frac{d \phi}{d x} \frac{d x}{d r} + \frac{d \phi}{d y} \frac{d y}{d r}
= \frac{y}{x^2+y^2} sin{\phi} - \frac{x}{x^2+y^2} cos{\phi}\\
= \frac{y}{x^2+y^2} \frac{x}{\sqrt{x^2+y^2}} - \frac{x}{x^2+y^2} \frac{y}{\sqrt{x^2+y^2}}\\
= 0[/tex]
Obviously this isn't correct, so I must be going about this the wrong way.