- #1
nameVoid
- 241
- 0
[tex]
\int \frac{x-arctanx}{x^3}dx
[/tex]
[tex]
\frac{d}{dx}( x-arctanx ) = 1-\frac{1}{1+x^2}=\frac{x^2}{x^2+1}
[/tex]
[tex]
= x^2 \sum_{n=0}^{\infty}(-1)^nx^{2n} = \sum_{n=0}^{\infty}(-1)^nx^{2n+2}
[/tex]
[tex]
\int \sum_{n=0}^{\infty}(-1)^nx^{2n+2} dx = \sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+3}}{2n+3}+C
[/tex]
[tex]
C=0?
[/tex]
[tex]
\int \frac{\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+3}}{2n+3}}{x^3} dx
[/tex]
[tex]
\int \sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{2n+3}}dx
[/tex]
[tex]
\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+3)(2n+1)}}
[/tex]
[tex]
\sum_{n=1}^{\infty}(-1)^n\frac{x^{2n}}{(2n+2)(2n)}}+C
[/tex]
here i took d/dx converted to geomtric then integrated divided by x^3 then integrated again not sure how to deal with the ontants of integration in this case took c=0 on the first integral
\int \frac{x-arctanx}{x^3}dx
[/tex]
[tex]
\frac{d}{dx}( x-arctanx ) = 1-\frac{1}{1+x^2}=\frac{x^2}{x^2+1}
[/tex]
[tex]
= x^2 \sum_{n=0}^{\infty}(-1)^nx^{2n} = \sum_{n=0}^{\infty}(-1)^nx^{2n+2}
[/tex]
[tex]
\int \sum_{n=0}^{\infty}(-1)^nx^{2n+2} dx = \sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+3}}{2n+3}+C
[/tex]
[tex]
C=0?
[/tex]
[tex]
\int \frac{\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+3}}{2n+3}}{x^3} dx
[/tex]
[tex]
\int \sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{2n+3}}dx
[/tex]
[tex]
\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+3)(2n+1)}}
[/tex]
[tex]
\sum_{n=1}^{\infty}(-1)^n\frac{x^{2n}}{(2n+2)(2n)}}+C
[/tex]
here i took d/dx converted to geomtric then integrated divided by x^3 then integrated again not sure how to deal with the ontants of integration in this case took c=0 on the first integral