- #1
realanswers
- 13
- 0
- Homework Statement
- A mass m is fixed to a given point on the rim of a wheel of radius R that rolls without
slipping on the ground. The wheel is massless, except for a mass M located at its
center. Find the equation of motion for the angle through which the wheel rolls. For
the case where the wheel undergoes small oscillations, find the frequency.
- Relevant Equations
- L = T - V
$$x = R \theta - \sin \theta$$
$$y = R - \cos \theta$$
My issue is in deriving the coordinates of a point on a wheel that rotates without slipping. In Morin's solution he says that:
My attempt at rederiving his equation:
I do not understand how the triangle on the bottom with sides indicated in green is the same as the triangle on top that is the only way I can get morin's solution. Am I missing something? This doesn't seem like a trivial thing (unless I am approaching it incorrectly and there is an easier way of seeing it).
My attempt at rederiving his equation:
I do not understand how the triangle on the bottom with sides indicated in green is the same as the triangle on top that is the only way I can get morin's solution. Am I missing something? This doesn't seem like a trivial thing (unless I am approaching it incorrectly and there is an easier way of seeing it).