- #1
Swlabr1
- 15
- 0
Let $a$ and $b$ be two integers such that there exists integers $p$, $q$ with $ap+bq=1\text{ mod }n$. Do there exist integers $a^{\prime}$ $b^{\prime}$, $p^{\prime}$ and $q^{\prime}$ such that, $x^{\prime}=x\text{ mod }n$ for $x\in\{a, b, p, q\}$ and, $$a^{\prime}p^{\prime}+b^{\prime}q^{\prime}=1?$$