- #1
- 8,520
- 16
Kind of a random question, but it came up in an online discussion I was having recently about a supposed proof that hinged on pythagorean triples and whether it could be generalized...I know it's possible to find pythagorean triples of the form a^2 + b^2 = c^2 such that a,b,c are all pairwise coprime (no two share a common factor larger than 1), for example 3^2 + 4^2 = 5^2. But is this possible with quadruples of the form a^2 + b^2 + c^2 = d^2, or quintuples of the form a^2 + b^2 + c^2 + d^2 = e^2, or any higher tuples? If so can anyone find some examples? I see this page has a method for generating higher tuples but I can't really follow it...
edit: according to this page the parametrization for generating all primitive pythagorean quadruples apparently implies that at least two of them must be divisible by 2, so in this case it won't work...but I'm still wondering about quintuples and higher...
edit: according to this page the parametrization for generating all primitive pythagorean quadruples apparently implies that at least two of them must be divisible by 2, so in this case it won't work...but I'm still wondering about quintuples and higher...
Last edited: