- #1
Jarvis Bull Dawg
- 17
- 0
Prove that of 25 is subtrated from the square of an odd integer greater than 5, the resulting number is always divisible by 8.
Solution:
Let S (n) = n2 – 25
For n = 1, S (1) = (1 )2 – 25 = -24 which is clearly divisible by 8.
Thus the first condition is satisfied as S(1) is true.
Let us assume that S(n) is true for n = 2k+1 Belonging to Odd integers greater than 5, that is,
S(2k+1) = (2k+1)2 - 25 is divisble by 8
= 4k2 + 4k + 1 -25
= 4k2 + 4k - 24
= 4(k2 + k - 6)
= 4(k-2)(k+3) ------ (A)
We can see that (A) is clearly divisible by 8, condition being that k is an odd integer which is bigger than 5. Since both conditions are satisfied, hence by mathematical induction we have proven that S(n) is divisble by 8 for all integers bigger than 5.
Solution:
Let S (n) = n2 – 25
For n = 1, S (1) = (1 )2 – 25 = -24 which is clearly divisible by 8.
Thus the first condition is satisfied as S(1) is true.
Let us assume that S(n) is true for n = 2k+1 Belonging to Odd integers greater than 5, that is,
S(2k+1) = (2k+1)2 - 25 is divisble by 8
= 4k2 + 4k + 1 -25
= 4k2 + 4k - 24
= 4(k2 + k - 6)
= 4(k-2)(k+3) ------ (A)
We can see that (A) is clearly divisible by 8, condition being that k is an odd integer which is bigger than 5. Since both conditions are satisfied, hence by mathematical induction we have proven that S(n) is divisble by 8 for all integers bigger than 5.