- #1
ManishR
- 88
- 0
the proof of http://en.wikipedia.org/wiki/Fermat%27s_theorem_%28stationary_points%29" from stewart calculus is in the pdf.
In short, the author has done something like this,
consider,
[tex]m\leq0[/tex]
[tex]\Rightarrow\frac{m}{n}\leq0[/tex]
so
[tex]\frac{m}{n}\leq0[/tex] if [tex]n>0[/tex] .....[1]
and
[tex]\frac{m}{n}\geq0[/tex] if [tex]n<0[/tex] .....[2]
from inqualties [1] & [2]
[tex]\frac{m}{n}=0[/tex]
[tex]\Rightarrow m=0[/tex]
which is incorrect because in
n of [1] =/= n of [2]
correct proof
Fermat Theoram Statement:
If
[tex]f(c)\geq f(c+k)[/tex] OR [tex]f(c)\leq f(c+k)[/tex] where [tex]a-c\leq k\leq b-c[/tex]
Then
[tex]\left[\frac{df(x)}{dx}\right]_{x=c}=0[/tex]
Proof:
[tex]\left[\frac{df(x)}{dx}\right]_{x=c}=\frac{df(c)}{dx}[/tex]
[tex]\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=\frac{dM}{dx}[/tex] where [tex]M=f(c)[/tex]
[tex]\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=lim_{h\rightarrow0}[/tex][tex]\frac{M(x+h)-M(x)}{h}[/tex]
[tex]\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=lim_{h\rightarrow0}[/tex][tex]\frac{0}{h}[/tex] because [tex]M(x+h)=M(x)[/tex]
[tex]\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=0[/tex]
so question is am i right ?
In short, the author has done something like this,
consider,
[tex]m\leq0[/tex]
[tex]\Rightarrow\frac{m}{n}\leq0[/tex]
so
[tex]\frac{m}{n}\leq0[/tex] if [tex]n>0[/tex] .....[1]
and
[tex]\frac{m}{n}\geq0[/tex] if [tex]n<0[/tex] .....[2]
from inqualties [1] & [2]
[tex]\frac{m}{n}=0[/tex]
[tex]\Rightarrow m=0[/tex]
which is incorrect because in
n of [1] =/= n of [2]
correct proof
Fermat Theoram Statement:
If
[tex]f(c)\geq f(c+k)[/tex] OR [tex]f(c)\leq f(c+k)[/tex] where [tex]a-c\leq k\leq b-c[/tex]
Then
[tex]\left[\frac{df(x)}{dx}\right]_{x=c}=0[/tex]
Proof:
[tex]\left[\frac{df(x)}{dx}\right]_{x=c}=\frac{df(c)}{dx}[/tex]
[tex]\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=\frac{dM}{dx}[/tex] where [tex]M=f(c)[/tex]
[tex]\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=lim_{h\rightarrow0}[/tex][tex]\frac{M(x+h)-M(x)}{h}[/tex]
[tex]\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=lim_{h\rightarrow0}[/tex][tex]\frac{0}{h}[/tex] because [tex]M(x+h)=M(x)[/tex]
[tex]\Rightarrow\left[\frac{df(x)}{dx}\right]_{x=c}=0[/tex]
so question is am i right ?
Attachments
Last edited by a moderator: