MHB Correctness of Ball-Dropping Problem Answer

  • Thread starter Thread starter Ackbach
  • Start date Start date
AI Thread Summary
The discussion centers on the motion of a ball dropped through a tunnel drilled straight through the Earth. It highlights that the gravitational force is non-constant, being zero at the center and increasing to standard gravity at the surface. The analysis leads to the conclusion that the ball's motion can be modeled as simple harmonic oscillation, with a solution indicating periodic motion akin to that of an object in orbit. The time for the ball to drop and return is equivalent to the orbital period of a satellite close to Earth's surface, assuming no air resistance. The conversation also touches on extending this model to three dimensions, resulting in elliptical trajectories when initial horizontal velocity is included.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
93
Mary decided to drop the ball drastically. She drilled a hole all the way through the earth, and dropped the ball from the Earth's surface. What is the motion of the ball?

So the tricky part here is that the force of gravity is non-constant as you drill through the earth. It is near-zero at the center, and climbs back up to $g$ at the surface.

Definitions: let
\begin{align*}
M_e&=\text{total mass of the earth}\\
y&=\text{position of the ball; }y=0\text{ at the center of the earth, and positive where Mary is}\\
M_y&=\text{mass of the Earth enclosed by a sphere of radius $y$ centered at the Earth's center} \\
m&=\text{mass of the ball} \\
F&=\text{force on the ball exerted by Earth's gravity} \\
R_e&=\text{radius of the earth, assumed spherical}\\
G&=\text{gravitational constant}\\
\rho&=\text{mass density of the earth, defined as } \frac{3M_e}{4\pi R_e^3}\\
t&=\text{time, with the clock starting at the drop: } t=0.
\end{align*}
Now, my big assumption here is that
$$F=-\frac{GM_y\, m}{y^2}. $$
I believe I have seen elsewhere that the sort of "annulus" of mass outside the sphere of radius $y$ centered at the origin cancels out. So we need to calculate $M_y$ in terms of $y$. I do the following:
\begin{align*}
M_y&=\rho\,\frac{4\pi y^3}{3} \\
&=\frac{3M_e}{4\pi R_e^3}\,\frac{4\pi y^3}{3}\\
&=\frac{M_e y^3}{R_e^3}.
\end{align*}
It follows that
$$F=-\frac{Gm}{y^2}\cdot \frac{M_e y^3}{R_e^3}=-\frac{GM_e\,my}{R_e^3}. $$
Now we just do Newton's Second Law and solve the resulting DE:
\begin{align*}
-\frac{GM_e\,m}{R_e^3}\,y&=m\ddot{y}\\
-\frac{GM_e}{R_e^3}\,y&=\ddot{y}.
\end{align*}
This is the regular harmonic oscillator, with solution
\begin{align*}
y&=A \sin\left(\sqrt{\frac{GM_e}{R_e^3}}\,t\right)+B\cos\left(\sqrt{\frac{GM_e}{R_e^3}}\,t\right)\\
\dot{y}&=A\sqrt{\frac{GM_e}{R_e^3}} \cos\left(\sqrt{\frac{GM_e}{R_e^3}}\,t\right)-B\sqrt{\frac{GM_e}{R_e^3}}\sin\left(\sqrt{\frac{GM_e}{R_e^3}}\,t\right).
\end{align*}
We use the initial conditions $y(0)=R_e$ and $\dot{y}(0)=0$ to obtain $A=0$ and $B=R_e,$ for a final solution of
$$y(t)=R_e\cos\left(\sqrt{\frac{GM_e}{R_e^3}}\,t\right). $$
Is this analysis correct? Obviously, I'm ignoring some factors such as Earth's rotation, travel about the sun, and the fact that the Earth is an oblate spheroid, not a sphere. But ignoring all that, is this correct?
 
Mathematics news on Phys.org
Worked this out long ago and arrived at the same conclusion. I'm used to using $r(t)$ instead of $y(t)$.

$r'' = -\dfrac{GM_e}{R_e^3} \cdot r$

$r'' = -w^2 \cdot r \implies \omega = \sqrt{\dfrac{GM_e}{R_e^3}}$

$r = R_e \cos(\omega t)$

$r' = -R_e \omega \sin(\omega t)$

$r'' = -R_e \omega^2 \cos(\omega t)$

what's interesting is the period of motion ...

$T = \dfrac{2\pi}{\omega} = 2\pi \sqrt{\dfrac{R_e^3}{GM_e}} \implies T^2 = \dfrac{4\pi^2 R_e^3}{GM_e}$ ... Kepler's law of harmony.

The time it takes from ball drop to return from the tunnel is the same as if the ball were orbiting the Earth close to its surface (no air resistance, of course).
 
It means we have a force that is linear with the distance to the center of the earth.
It assumes that the Earth has uniform density, is a perfect ball, and that the ball is free to move without friction.
It's a consequence of the so called Shell Theorem, which Newton first proved.

Such a linear force results in a simple harmonic oscillation (sine).
We can take it a step further and extend it to 3 dimensions with some initial horizontal speed leaving out the movement around the sun.
The beauty of it is that we get an elliptical trajectory, just like a planet around the sun.
The difference is that in this case the center of mass is in the center of the ellipse instead of in one of its focal points.
 
skeeter said:
Worked this out long ago and arrived at the same conclusion. I'm used to using $r(t)$ instead of $y(t)$.

$r'' = -\dfrac{GM_e}{R_e^3} \cdot r$

$r'' = -w^2 \cdot r \implies \omega = \sqrt{\dfrac{GM_e}{R_e^3}}$

$r = R_e \cos(\omega t)$

$r' = -R_e \omega \sin(\omega t)$

$r'' = -R_e \omega^2 \cos(\omega t)$

what's interesting is the period of motion ...

$T = \dfrac{2\pi}{\omega} = 2\pi \sqrt{\dfrac{R_e^3}{GM_e}} \implies T^2 = \dfrac{4\pi^2 R_e^3}{GM_e}$ ... Kepler's law of harmony.

The time it takes from ball drop to return from the tunnel is the same as if the ball were orbiting the Earth close to its surface (no air resistance, of course).

Nice insight, thanks!

Klaas van Aarsen said:
It means we have a force that is linear with the distance to the center of the earth.
It assumes that the Earth has uniform density, is a perfect ball, and that the ball is free to move without friction.
It's a consequence of the so called Shell Theorem, which Newton first proved.

Excellent! Thanks for teasing out those additional assumptions. It's always good to examine your assumptions.

Klaas van Aarsen said:
Such a linear force results in a simple harmonic oscillation (sine).
We can take it a step further and extend it to 3 dimensions with some initial horizontal speed leaving out the movement around the sun.
The beauty of it is that we get an elliptical trajectory, just like a planet around the sun.
The difference is that in this case the center of mass is in the center of the ellipse instead of in one of its focal points.

When you say "center of mass" do you mean the reduced center of mass, $\mu?$ Right, we'd get the usual two-body problem if we allow initial horizontal velocity.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top