- #1
karush
Gold Member
MHB
- 3,269
- 5
$\cot{(\theta)}=\tan{(2\theta-3\pi)}$ find $0<\theta<2\pi$
From the periodic Formula $\tan{(\theta+\pi n)}=\tan{\theta}$
thus
$
\displaystyle
\cot{(\theta)}
=\tan{(2\theta)}
\Rightarrow
\frac{1}{\tan{\theta}}
=\tan{(2\theta)}
$
there are 6 answers to this, but stuck here
From the periodic Formula $\tan{(\theta+\pi n)}=\tan{\theta}$
thus
$
\displaystyle
\cot{(\theta)}
=\tan{(2\theta)}
\Rightarrow
\frac{1}{\tan{\theta}}
=\tan{(2\theta)}
$
there are 6 answers to this, but stuck here