- #1
Haorong Wu
- 418
- 90
- Homework Statement
- Show that
##a^{\dagger} \left | \alpha \right > \left < \alpha \right | = \left ( \alpha ^{*} + \frac {\partial} {\partial \alpha} \right ) \left | \alpha \right > \left < \alpha \right |##
- Relevant Equations
- ##\left | \alpha \right >## is a coherent state, and ##a\left | \alpha \right >=\alpha \left | \alpha \right >##.
Also ##\left | \alpha \right > = e^{- \left | \alpha \right | ^2 /2} \sum_{n=0}^{\infty} \frac {\alpha ^n} {\sqrt{n!}} \left | n \right >##
I am confused about the problem. I thought operators do not act on bra vectors, and the problem is equivalent to
##a^{\dagger} \left | \alpha \right > = \left ( \alpha ^{*} + \frac {\partial} {\partial \alpha} \right ) \left | \alpha \right > ##. Then, strangely, ##\left < \alpha \right |## is redundant. So I think, ##\left < \alpha \right |## is included because the operator ##a^\dagger## has some effects on it.
On the other hand, I could not solve the problem. I tried to insert the completeness ralation so that
##a^{\dagger} \left | \alpha \right > \left < \alpha \right | =\frac 1 {\pi} \int d^2 \alpha ^{'} a^{\dagger} \left | \alpha^{'} \right > \left < \alpha^{'} \right |\left | \alpha \right > \left < \alpha \right | ##,
and tried to expand ##\left | \alpha \right > = e^{- \left | \alpha \right | ^2 /2} \sum_{n=0}^{\infty} \frac {\alpha ^n} {\sqrt{n!}} \left | n \right >##.
But neither method can give any terms including ## \frac {\partial} {\partial \alpha}##
Meanwhile, I am not sure how to do partial differential with ##\alpha## which is a complex number.
By the way, what is the meaning of ##\Box ^ 2## in ##\Box ^2 E = - \mu _0 P##?
Thanks!
##a^{\dagger} \left | \alpha \right > = \left ( \alpha ^{*} + \frac {\partial} {\partial \alpha} \right ) \left | \alpha \right > ##. Then, strangely, ##\left < \alpha \right |## is redundant. So I think, ##\left < \alpha \right |## is included because the operator ##a^\dagger## has some effects on it.
On the other hand, I could not solve the problem. I tried to insert the completeness ralation so that
##a^{\dagger} \left | \alpha \right > \left < \alpha \right | =\frac 1 {\pi} \int d^2 \alpha ^{'} a^{\dagger} \left | \alpha^{'} \right > \left < \alpha^{'} \right |\left | \alpha \right > \left < \alpha \right | ##,
and tried to expand ##\left | \alpha \right > = e^{- \left | \alpha \right | ^2 /2} \sum_{n=0}^{\infty} \frac {\alpha ^n} {\sqrt{n!}} \left | n \right >##.
But neither method can give any terms including ## \frac {\partial} {\partial \alpha}##
Meanwhile, I am not sure how to do partial differential with ##\alpha## which is a complex number.
By the way, what is the meaning of ##\Box ^ 2## in ##\Box ^2 E = - \mu _0 P##?
Thanks!