- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi! (Smile)
According to my notes:
Let $p \in \mathbb{P}$.
The set of the integer p-adic numbers is defined as:
$$\mathbb{Z}_p:= \{( \overline{x_n})_{n \in \mathbb{N}_0} \in \Pi _{n=0}^{\infty} \frac{\mathbb{Z}}{p^{n+1} \mathbb{Z}} | x_{n+1} \equiv x_n \pmod {p^{n+1}}\}$$
Could you explain me the definition? (Sweating)
Remark: The inverse limit is:
$$\mathbb{Z}_p=\lim_{\overleftarrow{n}} \frac{\mathbb{Z}}{p^n \mathbb{Z}}$$Could you also explain me the difinition of the inverse limit? (Worried)
According to my notes:
Let $p \in \mathbb{P}$.
The set of the integer p-adic numbers is defined as:
$$\mathbb{Z}_p:= \{( \overline{x_n})_{n \in \mathbb{N}_0} \in \Pi _{n=0}^{\infty} \frac{\mathbb{Z}}{p^{n+1} \mathbb{Z}} | x_{n+1} \equiv x_n \pmod {p^{n+1}}\}$$
Could you explain me the definition? (Sweating)
Remark: The inverse limit is:
$$\mathbb{Z}_p=\lim_{\overleftarrow{n}} \frac{\mathbb{Z}}{p^n \mathbb{Z}}$$Could you also explain me the difinition of the inverse limit? (Worried)