- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I am looking at the proposition:
[m] If $(A_n)_{n \in \omega}$ is a sequence of sets and $(f_n)_{n \in \omega}$ is a sequence of functions then:
for all $n \in \omega, f_n: \omega \overset{\text{ surjective }}{\rightarrow} A_n$ then there is a function $f: \omega \overset{\text{ surjective }}{\rightarrow} \bigcup_{n \in \omega} A_n$. [/m]Could you give me an example of such a case?
I am looking at the proposition:
[m] If $(A_n)_{n \in \omega}$ is a sequence of sets and $(f_n)_{n \in \omega}$ is a sequence of functions then:
for all $n \in \omega, f_n: \omega \overset{\text{ surjective }}{\rightarrow} A_n$ then there is a function $f: \omega \overset{\text{ surjective }}{\rightarrow} \bigcup_{n \in \omega} A_n$. [/m]Could you give me an example of such a case?