- #1
PsychonautQQ
- 784
- 10
Homework Statement
Consider the field K=Z_2[X]/<x^3+x+1>. How many elements does this field have?
Then let f(x) = x^3+x+1 and b be a root of f(x) in Z_2[X], Find all other roots of f(x) in K and describe the Galois group
Homework Equations
The Attempt at a Solution
So I'm trying to understand what K looks like, perhaps something like this:
K={ax^3 + bx^2 + cx + d | a,b,c,d are elements of Z_2 and x^3+x+1 = 0}
Then is it possible that since x^3 = x + 1 mod 2 that I could make this substitution in the description of the field? i.e.:
K={a(x+1) + bx^2 + cx + d | a,b,c,d are elements of Z_2 and x^3+x+1 = 0}
={ax+a + bx^2 + cx + d | a,b,c,d are elements of Z_2 and x^3+x+1 = 0}
= {bx^2 + (c+a)x + (d+a) | a,b,c,d are elements of Z_2 and x^3+x+1 = 0}
={bx^2 + ex + f | a,b,c,d are elements of Z_2 and x^3+x+1 = 0}
So there would be 8 elements maybe? Is this logic correct?