- #1
dsfranca
- 23
- 0
I was confonoted with the following problem today, and thought it was interesting enough to discuss it here:
You have a box with balls numbered 1,2,3...n.
Suppose you began, by taking out balls numbered 1–100
and then put ball 1 back. Suppose you then removed balls 101–200
and put ball 2 back. Then you took balls 201–300 into your lap, found
ball 3, and put it back. And so forth. After doing this countably many
times, which balls are left in your lap?
I was tempted to affirm that, as there is a bijection between the number of balls that were put back to the box and the number of times you repeat this, f(n)=n, after n steps all balls would be inside the box . However, as there is also a function from N to the number of balls you have outside, namely f(x)=99x, I would conclude that you have the same number of balls inside and outside the box, in other words, the set of balls in the box and the one of balls outside it have the same cardinality.
Is this last conclusion correct?
I hope I was able to express myself clearly!
Thanks,
Daniel
Homework Statement
You have a box with balls numbered 1,2,3...n.
Suppose you began, by taking out balls numbered 1–100
and then put ball 1 back. Suppose you then removed balls 101–200
and put ball 2 back. Then you took balls 201–300 into your lap, found
ball 3, and put it back. And so forth. After doing this countably many
times, which balls are left in your lap?
Homework Equations
The Attempt at a Solution
I was tempted to affirm that, as there is a bijection between the number of balls that were put back to the box and the number of times you repeat this, f(n)=n, after n steps all balls would be inside the box . However, as there is also a function from N to the number of balls you have outside, namely f(x)=99x, I would conclude that you have the same number of balls inside and outside the box, in other words, the set of balls in the box and the one of balls outside it have the same cardinality.
Is this last conclusion correct?
I hope I was able to express myself clearly!
Thanks,
Daniel