- #1
MI5
- 8
- 0
Let $ \left\{A_1, A_2, \cdots , A_n\right\}$ be a system of subsets of a finite set $A$ such that these subsets are pairwise disjoint and their union $A = \cup_{i=1}^{n}A_{i}$. Then
$ |A| = \sum_{i=1}^{n}|A_i|$. (1)
Proof: According to the hypothesis, each $a \in A$ belongs to exactly one of the subsets $A_{i}$, and therefore it counts exactly once on each side of equation 1.Could someone explain the bold bit (what's meant by it counts exactly once on each side of the equation) and why that counts as proof.
$ |A| = \sum_{i=1}^{n}|A_i|$. (1)
Proof: According to the hypothesis, each $a \in A$ belongs to exactly one of the subsets $A_{i}$, and therefore it counts exactly once on each side of equation 1.Could someone explain the bold bit (what's meant by it counts exactly once on each side of the equation) and why that counts as proof.