- #1
topolosaurus
- 3
- 0
[tex]
\newcommand{\dep}[1]{\partial_{#1}}
\newcommand{\parcial}[2]{\frac{\partial{#1}}{\partial{#2}}}
\renewcommand{\d}{\text{d}}
\newcommand{\ddt}{\frac{\text{d}}{\text{d}t}}
\newcommand{\ppartial}[3]{\frac{\partial^2{#1}}{\partial{#2}\partial{#2}}}
[/tex]
I haven't found this problem solved around maybe because it's a simple thing that I'm not yet able to see.
I have studied a bit of calculus of variations and I have succesfully derived Euler equations for the case of particles (i.e. for curves [itex]q: [ a , b ] \rightarrow \mathbb{R}^n[/itex]) when I have a lagrangian and action of the form:
[tex]
S[q] = \int_a^b L(t,q,\dot{q}) \d t
[/tex]This yields the classical Euler-Lagrange equations[tex]
0 = \parcial{L}{q^k}-\ddt\parcial{L}{\dot{q}^k}
[/tex]
I have been able to show that these equations share the same form for a change of coordinates in configuration space [itex]q^\mu \rightarrow x^\mu[/itex] which means that if E-L equations for [itex]q[/itex] holds then:
[tex]
0 = \parcial{L}{x^k} - \ddt \parcial{L}{\dot{x}^k}
[/tex]
This also happens if [itex]t[/itex] is involved in the coordinate transformation. Now I want to check that this covariance holds also for Euler Lagrange equations of fields, in which case we have:
Now the action over the field is
[tex]
S[\phi] = \int_\Omega \mathcal{L}(x,\phi,\dep{\mu}\phi) \d^4 x
[/tex]
The derived Euler Lagrange equations are:[tex]
0 = \parcial{\mathcal{L}}{\phi} - \dep{\mu}\left(\parcial{\mathcal{L}}{(\dep{\mu}\phi)}\right)
[/tex]
For convenience I shall write out explicitly partial derivatives
[tex]
0 = \parcial{\mathcal{L}}{\phi} - \parcial{}{x^\mu} \left( \parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)} \right)
[/tex]
Now consider a space-time transformation [itex]x^\mu \rightarrow q^\mu[/itex] which in principle is not Lorentz transformation. The transformation of the derivatives of the field follow simply from the chain rule:
[tex]
\parcial{\phi}{x^\mu} = \parcial{\phi}{q^\nu} \parcial{q^\nu}{x^\mu}
[/tex]
Hence:
[tex]
\parcial{}{\left(\parcial{\phi}{q^\sigma}\right)}\left(\mathcal{L}(\phi,\parcial{\phi}{x^\mu}) \right)
=
\parcial{}{\left( \parcial{\phi}{q^\sigma}\right)}
\left(\mathcal{L}(\phi,\parcial{\phi}{q^\nu}\parcial{q^\nu}{x^\mu}) \right)
=
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)} \parcial{}{\left(\parcial{\phi}{q^\sigma}\right)}
\left(
\parcial{\phi}{q^\nu}\parcial{q^\nu}{x^\mu}
\right)
=
\parcial{\mathcal{L}}{\left(\parcial{\phi}{x^\mu}\right)} \parcial{q^\sigma}{x^\mu}
[/tex]
This yields:
[tex]
\begin{aligned}
\parcial{}{q^\sigma}
\left(
\parcial{\mathcal{L}}{\left( \parcial{\phi}{q^\sigma}\right)}
\right)
&& = &&
\parcial{}{q^\sigma}
\left(
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\right)
\parcial{q^\sigma}{x^\mu}
+
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\parcial{}{x^\alpha}
\left(
\parcial{q^\sigma}{x^\mu}
\right)
\parcial{x^\alpha}{q^\sigma}\\
&& = &&
\parcial{}{x^\alpha}
\left(
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\right)
\parcial{q^\sigma}{x^\mu}
\parcial{x^\alpha}{q^\sigma}
+
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\ppartial{q^\sigma}{x^\alpha}{x^\mu}
\parcial{x^\alpha}{q^\sigma}\\
&& = &&
\parcial{}{x^\alpha}
\left(
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\right)
\delta_\mu^\alpha
+
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\ppartial{q^\sigma}{x^\alpha}{x^\mu}
\parcial{x^\alpha}{q^\sigma}\\
\end{aligned}
[/tex]
This and the fact that [itex]\parcial{\mathcal{L}}{\phi}[/itex] is independent of coordinates yields that the latter extra term in Euler Lagrange equations for [itex]q[/itex] coordinates. Moreover, I tend not to trust second derivatives expressions of the coordinates to be covariant from differential geometry (I may be wrong for a general case though). Any ideas on how to continue from this point or possible mistakes?
One possible thing I could be stepping on is the fact that lagrangian is a density and maybe I have to consider the jacobian of the transformation as a weight. However this seems a very big complication to treat a 4x4 determinant expression and could not be generalized (or at least have an equal treatment) for higher dimensions.
\newcommand{\dep}[1]{\partial_{#1}}
\newcommand{\parcial}[2]{\frac{\partial{#1}}{\partial{#2}}}
\renewcommand{\d}{\text{d}}
\newcommand{\ddt}{\frac{\text{d}}{\text{d}t}}
\newcommand{\ppartial}[3]{\frac{\partial^2{#1}}{\partial{#2}\partial{#2}}}
[/tex]
I haven't found this problem solved around maybe because it's a simple thing that I'm not yet able to see.
I have studied a bit of calculus of variations and I have succesfully derived Euler equations for the case of particles (i.e. for curves [itex]q: [ a , b ] \rightarrow \mathbb{R}^n[/itex]) when I have a lagrangian and action of the form:
[tex]
S[q] = \int_a^b L(t,q,\dot{q}) \d t
[/tex]This yields the classical Euler-Lagrange equations[tex]
0 = \parcial{L}{q^k}-\ddt\parcial{L}{\dot{q}^k}
[/tex]
I have been able to show that these equations share the same form for a change of coordinates in configuration space [itex]q^\mu \rightarrow x^\mu[/itex] which means that if E-L equations for [itex]q[/itex] holds then:
[tex]
0 = \parcial{L}{x^k} - \ddt \parcial{L}{\dot{x}^k}
[/tex]
This also happens if [itex]t[/itex] is involved in the coordinate transformation. Now I want to check that this covariance holds also for Euler Lagrange equations of fields, in which case we have:
- [itex]q^\mu, x^\mu[/itex] are now space-time coordinates
- [itex]\phi[/itex] is the scalar field involved
Now the action over the field is
[tex]
S[\phi] = \int_\Omega \mathcal{L}(x,\phi,\dep{\mu}\phi) \d^4 x
[/tex]
The derived Euler Lagrange equations are:[tex]
0 = \parcial{\mathcal{L}}{\phi} - \dep{\mu}\left(\parcial{\mathcal{L}}{(\dep{\mu}\phi)}\right)
[/tex]
For convenience I shall write out explicitly partial derivatives
[tex]
0 = \parcial{\mathcal{L}}{\phi} - \parcial{}{x^\mu} \left( \parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)} \right)
[/tex]
Now consider a space-time transformation [itex]x^\mu \rightarrow q^\mu[/itex] which in principle is not Lorentz transformation. The transformation of the derivatives of the field follow simply from the chain rule:
[tex]
\parcial{\phi}{x^\mu} = \parcial{\phi}{q^\nu} \parcial{q^\nu}{x^\mu}
[/tex]
Hence:
[tex]
\parcial{}{\left(\parcial{\phi}{q^\sigma}\right)}\left(\mathcal{L}(\phi,\parcial{\phi}{x^\mu}) \right)
=
\parcial{}{\left( \parcial{\phi}{q^\sigma}\right)}
\left(\mathcal{L}(\phi,\parcial{\phi}{q^\nu}\parcial{q^\nu}{x^\mu}) \right)
=
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)} \parcial{}{\left(\parcial{\phi}{q^\sigma}\right)}
\left(
\parcial{\phi}{q^\nu}\parcial{q^\nu}{x^\mu}
\right)
=
\parcial{\mathcal{L}}{\left(\parcial{\phi}{x^\mu}\right)} \parcial{q^\sigma}{x^\mu}
[/tex]
This yields:
[tex]
\begin{aligned}
\parcial{}{q^\sigma}
\left(
\parcial{\mathcal{L}}{\left( \parcial{\phi}{q^\sigma}\right)}
\right)
&& = &&
\parcial{}{q^\sigma}
\left(
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\right)
\parcial{q^\sigma}{x^\mu}
+
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\parcial{}{x^\alpha}
\left(
\parcial{q^\sigma}{x^\mu}
\right)
\parcial{x^\alpha}{q^\sigma}\\
&& = &&
\parcial{}{x^\alpha}
\left(
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\right)
\parcial{q^\sigma}{x^\mu}
\parcial{x^\alpha}{q^\sigma}
+
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\ppartial{q^\sigma}{x^\alpha}{x^\mu}
\parcial{x^\alpha}{q^\sigma}\\
&& = &&
\parcial{}{x^\alpha}
\left(
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\right)
\delta_\mu^\alpha
+
\parcial{\mathcal{L}}{\left( \parcial{\phi}{x^\mu}\right)}
\ppartial{q^\sigma}{x^\alpha}{x^\mu}
\parcial{x^\alpha}{q^\sigma}\\
\end{aligned}
[/tex]
This and the fact that [itex]\parcial{\mathcal{L}}{\phi}[/itex] is independent of coordinates yields that the latter extra term in Euler Lagrange equations for [itex]q[/itex] coordinates. Moreover, I tend not to trust second derivatives expressions of the coordinates to be covariant from differential geometry (I may be wrong for a general case though). Any ideas on how to continue from this point or possible mistakes?
One possible thing I could be stepping on is the fact that lagrangian is a density and maybe I have to consider the jacobian of the transformation as a weight. However this seems a very big complication to treat a 4x4 determinant expression and could not be generalized (or at least have an equal treatment) for higher dimensions.