- #1
showzen
- 34
- 0
Homework Statement
Given random vector ##X'=[X_1,X_2,X_3,X_4]## with mean vector ##\mu '_X=[4,3,2,1]## and covariance matrix
$$\Sigma_X=\begin{bmatrix}
3&0&2&2\\
0&1&1&0\\
2&1&9&-2\\
2&0&-2&4
\end{bmatrix}.$$
Partition ##X## as
$$X=\begin{bmatrix}
X_1\\X_2\\\hline X_3\\X_4\end{bmatrix}
=\begin{bmatrix}
X^{(1)}\\\hline X^{(2)}\end{bmatrix}.$$
Let ##A=[1,2]## and ##B=\begin{bmatrix}1&-2\\2&-1\end{bmatrix}##. Find Cov##(AX^{(1)},BX^{(2)})##.
Homework Equations
Cov##(CX)=C\Sigma_X C'##
Cov##(X^{(1)},X^{(2)})=\Sigma_{12}##
The Attempt at a Solution
Cov(##AX^{(1)},BX^{(2)})=A\Sigma_{12}B'=[1,2]\begin{bmatrix}2&2\\1&0\end{bmatrix}\begin{bmatrix}1&2\\-2&-1\end{bmatrix}=[0,6]##
Although I have arrived at an answer, I do not know how to interpret it. We have scalar ##AX^{(1)}## and vector ##BX^{(2)}##, and we arrive at row vector covariance?