- #1
center o bass
- 560
- 2
Hi. I'm trying to understand a derivation of the Bianchi idenity which starts from the torsion tensor in a torsion free space;
$$ 0 = T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$
according to the author, covariant differentiation of this identity with respect to a vector Z yields
$$$ 0 = \nabla_Z \{\nabla_X Y - \nabla_Y X - [X,Y]\} = \nabla_Z\nabla_X Y - \nabla_Z \nabla_Y X - \{ \nabla_{[X,Y]}Z + [Z,[X,Y]] \}$$.
The two first terms are obvious, but how does he arrive at the third term?
$$ 0 = T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$
according to the author, covariant differentiation of this identity with respect to a vector Z yields
$$$ 0 = \nabla_Z \{\nabla_X Y - \nabla_Y X - [X,Y]\} = \nabla_Z\nabla_X Y - \nabla_Z \nabla_Y X - \{ \nabla_{[X,Y]}Z + [Z,[X,Y]] \}$$.
The two first terms are obvious, but how does he arrive at the third term?