- #1
kiuhnm
- 66
- 1
I've just learned about the covariant derivatives (##\nabla_i## and ##\delta/\delta t##) and I have a doubt.
We should be able to say that $$
J^i = \frac{\delta A^i}{\delta t}
= \frac{\delta^2 V^i}{\delta^2 t}
= \frac{\delta^3 Z^i}{\delta^3 t}
$$ where ##J## is the jolt. This should mean that $$
\frac{\delta Z^i}{\delta t} = \frac{d Z^i}{dt}
$$ but I can't prove it. This should be equivalent to proving that $$
Z^j \Gamma_{jk}^i V^k = 0
$$ Here's my heroic attempt: $$
\begin{align*}
Z^j \Gamma_{jk}^i V^k &= Z^j V^k \frac{\partial \pmb{Z}_j}{\partial Z^k}\cdot \pmb{Z}^i \\
&= Z^j \frac{d Z^k}{dt} \frac{\partial \pmb{Z}_j}{\partial Z^k}\cdot \pmb{Z}^i \\
&= Z^j \frac{d \pmb{Z}_j}{dt}\cdot \pmb{Z}^i \\
\end{align*}
$$ Now what? I also tried using the product rule but it doesn't seem to improve the situation...
We should be able to say that $$
J^i = \frac{\delta A^i}{\delta t}
= \frac{\delta^2 V^i}{\delta^2 t}
= \frac{\delta^3 Z^i}{\delta^3 t}
$$ where ##J## is the jolt. This should mean that $$
\frac{\delta Z^i}{\delta t} = \frac{d Z^i}{dt}
$$ but I can't prove it. This should be equivalent to proving that $$
Z^j \Gamma_{jk}^i V^k = 0
$$ Here's my heroic attempt: $$
\begin{align*}
Z^j \Gamma_{jk}^i V^k &= Z^j V^k \frac{\partial \pmb{Z}_j}{\partial Z^k}\cdot \pmb{Z}^i \\
&= Z^j \frac{d Z^k}{dt} \frac{\partial \pmb{Z}_j}{\partial Z^k}\cdot \pmb{Z}^i \\
&= Z^j \frac{d \pmb{Z}_j}{dt}\cdot \pmb{Z}^i \\
\end{align*}
$$ Now what? I also tried using the product rule but it doesn't seem to improve the situation...
Last edited: