MHB COVID-19 in a Small Town: Probability of Infection

AI Thread Summary
The discussion focuses on calculating the probabilities of COVID-19 infection among a random sample of six residents from a small town where 22% are infected. The probability that exactly two residents are infected is derived using the formula 15p^2(1-p)^4, with p set at 0.22. For the scenario of "at most one" infection, the probabilities for none and exactly one infected are combined, resulting in the formula (1-p)^6 + 6p(1-p)^5. The calculations illustrate how to apply binomial probability principles to determine infection likelihood in small populations. Understanding these probabilities can help in assessing risk in similar community settings.
laprec
Messages
18
Reaction score
0
Kindly assist with these questions:
Data showed that 22% of people in a small town was infected with the COVID-19 virus. A random sample of six residents from this town was selected.
1) What is the probability that exactly two of these residents was infected?
2) What is the probability that at most 1 of these residents was infected?
Thank you
 
Mathematics news on Phys.org
If the probability a given person has the virus is p then the probability that person does not have it is 1- p. First imagine putting the six people in a given order. The probability the first person has the virus is p, the probability the next person has the virus is p, the probability the third person does NOT have the virus is 1- p, the probability the fourth person does not is1-p, and the probability the fifth and sixth persons do not is 1-p.

The probability the first two people have the virus and the other four do not, in that order, is $p^2(1-p)^4$.

There are $\frac{6!}{2!4!}= \frac{6(5)}{2}= 15$ different orders of those two people who have the virus and four who do not so the probability two of a random six people have the diease and four do not is $15p^2(1- p)^4$.

In your problem, of course, p= 0.22.

"At most one" means "either one or none". By the same argument as above, the probability none of the people has the virus is $(1- p)^6$ and the probability exactly one has it is $6p(1-p)^5$. Since "none" and "exactly one" are "mutually exclusive", the probability of "at most one" is the sum of those.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top