- #36
michael879
- 698
- 7
I totally agree with what you just said, but I'm talking about the Kerr-Schild form of the metric not the Boyer-Linquist one. I have no idea what the 4-potential is in the Boyer-Linquist formulism, which is why I've been sticking to the Kerr-Schild form. In the Boyer-Linquist form, time reversal changes the sign of a and dt, which cancel out exactly, preserving the line element. The metric has 1 off diagonal term in phi-time. This component has an overall factor of a, so that it changes sign under time reversal.
Therefore the metric, and the line element transform correctly in the Boyer-Linquist form. However I don't know the form of the 4-potential, so I can't say if that transforms correctly as well.
In the Kerr-Schild form, the line element changes under time reversal (if you just take into account the sign changes of a and dt), and the metric and 4-potential do not transform correctly. The only way to rectify this, that I can see, is to either say the Kerr-Schild form is wrong, or to make the additional transformations I mentioned above. Note, that in the Boyer-Linquist form the additional transformations do not change the line element either, so that everything still transforms correctly. I would be interested to see what the 4-potential is though, because I would suspect it could only transform correctly given the additional transformations (and for whatever reason the Boyer-Linquist form hides them).
Therefore the metric, and the line element transform correctly in the Boyer-Linquist form. However I don't know the form of the 4-potential, so I can't say if that transforms correctly as well.
In the Kerr-Schild form, the line element changes under time reversal (if you just take into account the sign changes of a and dt), and the metric and 4-potential do not transform correctly. The only way to rectify this, that I can see, is to either say the Kerr-Schild form is wrong, or to make the additional transformations I mentioned above. Note, that in the Boyer-Linquist form the additional transformations do not change the line element either, so that everything still transforms correctly. I would be interested to see what the 4-potential is though, because I would suspect it could only transform correctly given the additional transformations (and for whatever reason the Boyer-Linquist form hides them).