- #1
BlackVision
- 28
- 1
Even though I and others have expressed that there was nothing wrong with the original "Cranial Sizes Between Races" thread as it was completely scientific in nature, I will revise it for this thread and meet Monique's questionable demand as this is a very important issue.
The cranial size and intelligence link have been substantiated by countless mainstream journals such as Intelligence and the American Journal of Psychiatry. Even Evo should be able to state these are reliable sources. If there is a study in any of the mainstream journals that state the contrary, I am unaware of them. So any thoughts to this? Agree? Disagree?
Some excerpts:
"We now know quite conclusively from MRI studies, for example, that IQ is correlated with brain size, but we still don't know what precisely it is about brain size that causes this correlation."--Kings of Men: Introduction to a Special Issue of the Journal of INTELLIGENCE (1998)
by DOUGLAS K. DETTERMAN (kudos to Mandrake for this one)
"The first of these MRI studies were published in the late 1980s and early 1990s in leading, refereed, mainstream journals like Intelligence (Willerman et al., 1991) and the American Journal of Psychiatry (Andreasen et al., 1993). I know Gould is aware of them because my colleagues and I routinely sent him copies as they appeared and asked him what he thought! For the record, let it be known that Gould did not reply to the missives regarding the published scientific data that destroyed the central thesis of his first edition."--J Ruston
"The published research that most clearly shows the correlation between brain size and intelligence employed MRI, which creates, in vivo, a three-dimensional image of the brain. An overall correlation of 0.44 was found between MRI-measured-brain-size and IQ in 8 separate studies with a total sample size of 381 non-clinical adults. This correlation is about as strong as the relationship between socioeconomic status of origin and IQ. In seven MRI studies of clinical adults (N = 312) the overall correlation was 0.24; in 15 studies using external head measurements with adults (N = 6,437) the overall correlation was 0.15, and in 17 studies using external head measurements with children and adolescents (N = 45,056) the overall correlation was 0.21. The head size and brain size correlation with the g factor itself, which Gould would have you believe is a mere artifact, is even larger --- 0.60! (Jensen, 1994; Wickett et al., 1996).
"Is it reasonable to expect that brain size and cognitive ability are related? Yes! Haug (1987, p.135) found a correlation of 0.479 (N = 81, P<0.001) between number of cortical neurons (based on a partial count of representative areas of the brain) and brain size in humans. His sample included both men and women. The regression relating the two measures is: number of cortical neurons (in billions)= 5.583 + 0.006 (cm3 brain volume). According to this equation, a person with a brain size of 1,400 cm3 has, on average, 600 million fewer cortical neurons than an individual with a brain size of 1,500 cm3. The difference between the low end of the normal distribution (1,000 cm3) and the high end (1,700 cm3) works out to be 4.2 billion neurons. That amounts to 27% more neurons for a 41% increase in brain size. The best estimate is that the human brain contains about 100 billion (1011) neurons classifiable into perhaps as many as 10,000 different types resulting in 100,000 billion synapses (Kandel, 1991). Even storing information at the low average rate of one bit per synapse, which would require two levels of synaptic activity (high or low/on or off), the structure as a whole would generate 1014 bits of information. Contemporary supercomputers, by comparison, typically have a memory of about 109 bits."--J Rushton
The cranial size and intelligence link have been substantiated by countless mainstream journals such as Intelligence and the American Journal of Psychiatry. Even Evo should be able to state these are reliable sources. If there is a study in any of the mainstream journals that state the contrary, I am unaware of them. So any thoughts to this? Agree? Disagree?
Some excerpts:
"We now know quite conclusively from MRI studies, for example, that IQ is correlated with brain size, but we still don't know what precisely it is about brain size that causes this correlation."--Kings of Men: Introduction to a Special Issue of the Journal of INTELLIGENCE (1998)
by DOUGLAS K. DETTERMAN (kudos to Mandrake for this one)
"The first of these MRI studies were published in the late 1980s and early 1990s in leading, refereed, mainstream journals like Intelligence (Willerman et al., 1991) and the American Journal of Psychiatry (Andreasen et al., 1993). I know Gould is aware of them because my colleagues and I routinely sent him copies as they appeared and asked him what he thought! For the record, let it be known that Gould did not reply to the missives regarding the published scientific data that destroyed the central thesis of his first edition."--J Ruston
"The published research that most clearly shows the correlation between brain size and intelligence employed MRI, which creates, in vivo, a three-dimensional image of the brain. An overall correlation of 0.44 was found between MRI-measured-brain-size and IQ in 8 separate studies with a total sample size of 381 non-clinical adults. This correlation is about as strong as the relationship between socioeconomic status of origin and IQ. In seven MRI studies of clinical adults (N = 312) the overall correlation was 0.24; in 15 studies using external head measurements with adults (N = 6,437) the overall correlation was 0.15, and in 17 studies using external head measurements with children and adolescents (N = 45,056) the overall correlation was 0.21. The head size and brain size correlation with the g factor itself, which Gould would have you believe is a mere artifact, is even larger --- 0.60! (Jensen, 1994; Wickett et al., 1996).
"Is it reasonable to expect that brain size and cognitive ability are related? Yes! Haug (1987, p.135) found a correlation of 0.479 (N = 81, P<0.001) between number of cortical neurons (based on a partial count of representative areas of the brain) and brain size in humans. His sample included both men and women. The regression relating the two measures is: number of cortical neurons (in billions)= 5.583 + 0.006 (cm3 brain volume). According to this equation, a person with a brain size of 1,400 cm3 has, on average, 600 million fewer cortical neurons than an individual with a brain size of 1,500 cm3. The difference between the low end of the normal distribution (1,000 cm3) and the high end (1,700 cm3) works out to be 4.2 billion neurons. That amounts to 27% more neurons for a 41% increase in brain size. The best estimate is that the human brain contains about 100 billion (1011) neurons classifiable into perhaps as many as 10,000 different types resulting in 100,000 billion synapses (Kandel, 1991). Even storing information at the low average rate of one bit per synapse, which would require two levels of synaptic activity (high or low/on or off), the structure as a whole would generate 1014 bits of information. Contemporary supercomputers, by comparison, typically have a memory of about 109 bits."--J Rushton