- #1
Malamala
- 314
- 27
Hello! I have the following vector ##\mathbf{A} = R(-\sin(\omega t)\mathbf{x}+\cos(\omega t)\mathbf{y})##, where ##\mathbf{x}## and ##\mathbf{y}## are orthogonal unit vectors (aslo orthogonal to ##\mathbf{z}##). I want to calculate ##\nabla \times \mathbf{A}##, but I am a bit confused. The curl operator involves partial derivatives with respect to x, y and z, so in the form above I would have ##\nabla \times \mathbf{A} = 0## . However, I know that ##\sin(\omega t) = \frac{y(t)}{R}## and ##\cos(\omega t) = \frac{x(t)}{R}## so I can write ##\mathbf{A} = R(-\frac{y}{R}\mathbf{x}+\frac{x}{R}\mathbf{y})##, in which case ##\nabla \times \mathbf{A} = 2 \mathbf{z} ##. Which is the right way to do this and why? Thank you!