Current of delta 3 phase balanced power

  • Thread starter Thread starter david90
  • Start date Start date
AI Thread Summary
The discussion focuses on the calculation of L1's current in a delta 3-phase balanced power system using Kirchhoff's Current Law (KCL). Participants debate whether the equation should be IR-IB or IR+IB, considering the current directions and voltage polarities. It is noted that the choice of current polarities is arbitrary but must be consistently applied once defined. The conversation emphasizes that current and voltage polarities do not need to align, allowing for flexibility in definitions. Ultimately, clarity in the chosen conventions is crucial for accurate calculations.
david90
Messages
311
Reaction score
2
Hi,

Regarding the picture below, the author calculates L1's current with KCL equation IR-IB = L1. Why is the KCL equation not IR+IB = L1 if the voltage of phase B and Phase R at one point during their cycle can be both positive (Assume positive voltage means current go toward the node)? If Phase B and Phase R voltage are positive then their current move in the same direction and thus IR and IB should have the same signage?

https://www.electricaltechnology.org/2014/09/delta-connection-power-voltage-current.html
Screenshot 2023-08-29 231047.png
 

Attachments

  • Screenshot 2023-08-29 231047.png
    Screenshot 2023-08-29 231047.png
    29.4 KB · Views: 101
Engineering news on Phys.org
Isn't it just a matter of convention? Picture clearly shows current directions. You could mark IB as going up, that would change all equations, giving IB+IR for L1 (that's assuming I understand correctly what L1 is).

That would also make the system of equations a bit chaotic to my taste though.
 
Borek said:
Isn't it just a matter of convention? Picture clearly shows current directions. You could mark IB as going up, that would change all equations, giving IB+IR for L1 (that's assuming I understand correctly what L1 is).

That would also make the system of equations a bit chaotic to my taste though.
How can phase shift of L1 be both IB+IR and IB-IR?
 
david90 said:
Regarding the picture below, the author calculates L1's current with KCL equation IR-IB = L1. Why is the KCL equation not IR+IB = L1
The author has clearly chosen the current polarities with the indicated arrows. That's why.

It can be an arbitrary choice, you may choose a different definition. But once the choice is made it must be followed.

There is no requirement that the defined current polarities match the voltage polarities. They can be defined separately, arbitrarily.
 
I agree with DaveE. In order to keep a more clear rule we take R as more than S and S more than T and the direction of current from S to R,from T to S and from R to T.
1693548033334.png
 
Thread 'Electromagnet magnetic field issue'
Hi Guys We are a bunch a mechanical engineers trying to build a simple electromagnet. Our design is based on a very similar magnet. However, our version is about 10 times less magnetic and we are wondering why. Our coil has exactly same length, same number of layers and turns. What is possibly wrong? PIN and bracket are made of iron and are in electrical contact, exactly like the reference design. Any help will be appreciated. Thanks. edit: even same wire diameter and coil was wounded by a...
Very basic question. Consider a 3-terminal device with terminals say A,B,C. Kirchhoff Current Law (KCL) and Kirchhoff Voltage Law (KVL) establish two relationships between the 3 currents entering the terminals and the 3 terminal's voltage pairs respectively. So we have 2 equations in 6 unknowns. To proceed further we need two more (independent) equations in order to solve the circuit the 3-terminal device is connected to (basically one treats such a device as an unbalanced two-port...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Back
Top