- #1
Swapnil
- 459
- 6
Given an orthogonal curvilinear coordinate system [tex](q_{1},q_{2},q_{3})[/tex] with standard orthonormal basis vectors [tex](\hat{e}_{1},\hat{e}_{2},\hat{e}_{3})[/tex], how would you prove the following?:
[tex]\frac{\partial \hat{e}_{i}}{\partial q_{j}}= \hat{e}_{j}\frac{1}{h_{i}}\frac{\partial h_{j}}{\partial q_{i}}\qquad \forall i \neq j[/tex]
where
[tex]h_{i}= \Big|\frac{\partial\vec{r}}{\partial q_{i}}\Big| = \sqrt{{\Big(\frac{\partial x}{\partial q_{i}}\Big)}^{2}+{\Big(\frac{\partial y}{\partial q_{i}}\Big)}^{2}+{\Big(\frac{\partial z}{\partial q_{i}}\Big)}^{2}}[/tex]
and
[tex]\hat{e}_{i}= \frac{1}{h_{i}}\frac{\partial \vec{r}}{\partial q_{i}}[/tex]
where
[tex]\vec{r}= x(q_{1},q_{2},q_{3})\hat{x}+y(q_{1},q_{2},q_{3})\hat{y}+z(q_{1},q_{2},q_{3})\hat{z}[/tex]
I don't know what am I missing, it probably involves some clever manipulation of the partial derivatives but I just can't figure it out.
[tex]\frac{\partial \hat{e}_{i}}{\partial q_{j}}= \hat{e}_{j}\frac{1}{h_{i}}\frac{\partial h_{j}}{\partial q_{i}}\qquad \forall i \neq j[/tex]
where
[tex]h_{i}= \Big|\frac{\partial\vec{r}}{\partial q_{i}}\Big| = \sqrt{{\Big(\frac{\partial x}{\partial q_{i}}\Big)}^{2}+{\Big(\frac{\partial y}{\partial q_{i}}\Big)}^{2}+{\Big(\frac{\partial z}{\partial q_{i}}\Big)}^{2}}[/tex]
and
[tex]\hat{e}_{i}= \frac{1}{h_{i}}\frac{\partial \vec{r}}{\partial q_{i}}[/tex]
where
[tex]\vec{r}= x(q_{1},q_{2},q_{3})\hat{x}+y(q_{1},q_{2},q_{3})\hat{y}+z(q_{1},q_{2},q_{3})\hat{z}[/tex]
I don't know what am I missing, it probably involves some clever manipulation of the partial derivatives but I just can't figure it out.
Last edited: