I Cylindrical coordinates -Curvilinear

chwala
Gold Member
Messages
2,827
Reaction score
415
TL;DR Summary
Why are the coordinates seemingly used when the symmetry is around ##z## axis? Any particular reason why not ##x## or ##y##. In transforming from Cartesian to cylindrical form; I can see that ##z## is not considered when determining ##r##.
Can we also use ##x## and ##z## assuming that the symmetry is about ##y##? Sorry using phone to type ...will put this into context later. I hope my query is clear enough.
Why are the coordinates seemingly used when the symmetry is around ##z## axis? Any particular reason why not ##x## or ##y##. In transforming from Cartesian to cylindrical form; I can see that ##z## is not considered when determining ##r##.
Can we also use ##x## and ##z## assuming that the symmetry is about ##y##? Sorry using phone to type ...will put this into context later. I hope my query is clear enough.
 
Physics news on Phys.org
The directions of the cartesian axes in space are not absolute, but can be chosen to fit the geometry of the particular problem; by convention in axisymmetric geometries the z-axis is placed on the axis of symmetry, giving an obvious extension of plane polar coordinates (x,y) = (r \cos \theta, r \sin \theta).

It is clearly possible to set \begin{split}<br /> x &amp;= w \\<br /> y &amp;= u \cos v \\<br /> z &amp;= u \sin v\end{split}<br /> or \begin{split}<br /> x &amp;= u \sin v \\<br /> y &amp;= w \\<br /> z &amp;= u \cos v \end{split} if you want.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top