- #1
QuantumPhoton1
- 1
- 0
Homework Statement
An electrostatic field ## \mathbf{E}## in a particular region is expressed in cylindrical coordinates ## ( r, \theta, z)## as
$$ \mathbf{E} = \frac{\sin{\theta}}{r^{2}} \mathbf{e}_{r} - \frac{\cos{\theta}}{r^{2}} \mathbf{e}_{\theta} $$
Where ##\mathbf{e}_{r}##, ##\mathbf{e}_{\theta}## and ##\mathbf{e}_{z}## are the unit vectors in the directions of ## r## , ##\theta## and ##z## respectively.
Derive an expression for the potential difference ## \Delta V = V_{2} - V_{1}##, where ##V_{1}## is the potential at position vector ## \mathbf{r}_{1}## with coordinates ##(2R,0,Z)## and ##V_{2}## is the potential at position vector ## \mathbf{r}_{2}## with coordinates ##(4R,\frac{\pi}{2},Z)##.
Homework Equations
$$ \Delta V = V(\mathbf{r}_{2}) - V(\mathbf{r}_{1}) = - \int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \mathbf{E} \cdot d \mathbf{l} $$
$$ \mathbf{E} = - \mathrm{grad} \, V $$
The Attempt at a Solution
I have gone through the question in a way that was hinted to me with the following logic. Since
## \mathrm{curl} \, \mathbf{E} = \mathbf{0} ##
The electrostatic field is conservative and therefore any line integral from two positions, regardless of the path taken, is path independent. Therefore a suitable path could be suggested to be to traverse a path, from ##\mathbf{r}_{1}## in the radial ## \mathbf{e}_{r}## direction and then, from this new position, traverse the polar ## \mathbf{e}_{\theta}## direction to ##\mathbf{r}_{2}##.
This approach I understand but I was wondering if there is another more efficient approach involving a direct linear path for a line integral from ##\mathbf{r}_{1}## to ##\mathbf{r}_{2}##. This is where my algebra has taken me.
The aim is to get to an expression, involving the parameter ##t##, where
$$
\begin{align}
\Delta V &= - \int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \mathbf{E} \cdot d \mathbf{l} \\
&= - \int_{t_{1}}^{t_{2}} \mathbf{E} \cdot \frac{d \mathbf{l}}{dt} ~ dt
\end{align}
$$
Let the path ## \mathbf{l} ## be a parametric path connecting ##\mathbf{r}_{1}## to ##\mathbf{r}_{2}## with the following substitutions and conditions.
$$ r = 2R(t+1) ~~~~~~~~~ \theta = \frac{\pi}{2} t ~~~~~~~~~ z= z ~~~~~~~~~ 0 \leq t \leq 1$$
Hence ## \mathbf{l} ## can be expressed in these parameters as
$$ \mathbf{l} = 2R(t+1) \mathbf{e}_{r} + \frac{\pi t}{2} \mathbf{e}_{\theta} + Z \mathbf{e}_{z}~~~~~~~~~ 0 \leq t \leq 1$$
This path represents the line integral with ##\mathbf{r}_{1}## and ##\mathbf{r}_{2}## at the end points.
Since ## \mathbf{l} ## is path in cylindrical coordinates, consider a line element ## d \mathbf{l} ## which has the form
$$
\begin{align}
d \mathbf{l} &= dr ~ \mathbf{e}_{r} + r ~ d \theta ~ \mathbf{e}_{\theta} + dz ~ \mathbf{e}_{z} \nonumber \\
\implies \frac{d \mathbf{l}}{dt} &= \frac{dr}{dt} ~ \mathbf{e}_{r} + r ~ \frac{d \theta}{dt} ~ \mathbf{e}_{\theta} + \frac{dz}{dt} ~ \mathbf{e}_{z} \nonumber \\
&= 2R \mathbf{e}_{r} + 2R(t+1) \frac{\pi}{2} \mathbf{e}_{\theta} + 0 \mathbf{e}_{z} \nonumber \\
&= 2R \mathbf{e}_{r} + \pi R(t+1)\mathbf{e}_{\theta}
\end{align}
$$
Also, Expressing the electrostatic field ## \mathbf{E} ## with the above parameters becomes
$$
\begin{align}
\mathbf{E} &= \frac{\sin{\theta}}{r^{2}} \mathbf{e}_{r} - \frac{\cos{\theta}}{r^{2}} \mathbf{e}_{\theta} \nonumber \\
&= \frac{\sin{ \left ( \frac{\pi t }{2} \right ) }}{ \left ( 2R(t+1) \right ) ^{2}} \mathbf{e}_{r} - \frac{\cos{\left ( \frac{\pi t }{2} \right )}}{\left ( 2R(t+1) \right ) ^{2}} \mathbf{e}_{\theta} \nonumber \\
&= \frac{\sin{ \left ( \frac{\pi t }{2} \right ) }}{ 4 R^{2} (t+1)^{2}} \mathbf{e}_{r} - \frac{\cos{\left ( \frac{\pi t }{2} \right )}}{4 R^{2} (t+1)^{2} } \mathbf{e}_{\theta} \nonumber \\
\end{align}
$$
Hence, let the line integral be defined as
$$
\begin{align}
\Delta V &= - \int_{\mathbf{r}_{1}}^{\mathbf{r}_{2}} \mathbf{E} \cdot d \mathbf{l} \\
&= - \int_{t_{1}}^{t_{2}} \mathbf{E} \cdot \frac{d \mathbf{l}}{dt} ~ dt \nonumber \\
&= - \int_{0}^{1} \begin{bmatrix}
\frac{\sin{ \left ( \frac{\pi t }{2} \right ) }}{ 4 R^{2} (t+1)^{2}} \\
- \frac{\cos{\left ( \frac{\pi t }{2} \right )}}{4 R^{2} (t+1)^{2} } \\
0
\end{bmatrix}
\cdot
\begin{bmatrix}
2R \\ \pi R(t+1) \\ 0
\end{bmatrix}
~ dt \nonumber \\
&= - \int_{0}^{1} \frac{2R\sin{ \left ( \frac{\pi t }{2} \right ) }}{ 4 R^{2} (t+1)^{2}} - \frac{\pi R(t+1)\cos{\left ( \frac{\pi t }{2} \right )}}{4 R^{2} (t+1)^{2} } ~ dt \nonumber\\
&= - \int_{0}^{1} \frac{\sin{ \left ( \frac{\pi t }{2} \right ) }}{ 2 R (t+1)^{2}} - \frac{\pi \cos{\left ( \frac{\pi t }{2} \right )}}{4 R (t+1) } ~ dt \nonumber\\
&= - \frac{1}{2R} \int_{0}^{1} \frac{\sin{ \left ( \frac{\pi t }{2} \right ) }}{ (t+1)^{2}} - \frac{\pi \cos{\left ( \frac{\pi t }{2} \right )}}{2 (t+1) } ~ dt \nonumber\\
&= \frac{1}{2R} \int_{0}^{1} \frac{\pi \cos{\left ( \frac{\pi t }{2} \right )}}{2 (t+1) } ~ dt - \frac{1}{2R} \int_{0}^{1} \frac{\sin{ \left ( \frac{\pi t }{2} \right ) }}{ (t+1)^{2}} ~ dt \nonumber\\
&= \frac{\pi}{4R} \int_{0}^{1} \frac{ \cos{\left ( \frac{\pi t }{2} \right )}}{ (t+1) } ~ dt - \frac{1}{2R} \int_{0}^{1} \frac{\sin{ \left ( \frac{\pi t }{2} \right ) }}{ (t+1)^{2}} ~ dt \nonumber\\
\end{align}
$$
This is where I think that I've gone wrong somewhere as I can see no obvious substitution to change either of these integrals into a standard form to be integrated.
Any help would be appreciated. Thank you