- #1
acedeno
- 36
- 4
*URGENT*Damped Harmonic Motion (Differential Equations)
A damped harmonic oscillator satisfies the following equation: d2x/dt2 = − 5x − 2dx/dt
(a) By assuming a trial function of the form x = A e^qt, determine the solution of this
equation "from scratch." Express your final answer as a real function, that is, there
should be no i’s in your final answer (where i = (−1)^½).
(b) Your solution to part (a) should have two constants (of integration).
If at t = 0, x = 0.0100 m and dx/dt = 0, determine the numerical values of these two
constants, correct to 3 significant digits.
I have no idea how to do this question. Could somebody(if they can) show me the solution? I have a midterm tomorrow and these are the types of questions I will need answer. I missed this class so I'm completely lost :S
A damped harmonic oscillator satisfies the following equation: d2x/dt2 = − 5x − 2dx/dt
(a) By assuming a trial function of the form x = A e^qt, determine the solution of this
equation "from scratch." Express your final answer as a real function, that is, there
should be no i’s in your final answer (where i = (−1)^½).
(b) Your solution to part (a) should have two constants (of integration).
If at t = 0, x = 0.0100 m and dx/dt = 0, determine the numerical values of these two
constants, correct to 3 significant digits.
I have no idea how to do this question. Could somebody(if they can) show me the solution? I have a midterm tomorrow and these are the types of questions I will need answer. I missed this class so I'm completely lost :S