- #1
Eric_meyers
- 68
- 0
Homework Statement
"Show that the ratio of two successive maxima in the displacement of a damped harmonic oscillator is constant."
Homework Equations
x = a e^(-[tex]\upsilon[/tex]t/2) cos ([tex]\omega[/tex]t - [tex]\vartheta[/tex])
The Attempt at a Solution
So I want to find when this beast has its maximum values, so I take the derivative and set it = 0
x' = -[tex]\upsilon[/tex]*a/2 * e^(-[tex]\upsilon[/tex]t/2) * cos ([tex]\omega[/tex]t - [tex]\vartheta[/tex]) - [tex]\omega[/tex] e^(-[tex]\upsilon[/tex]t/2) * a * sin([tex]\omega[/tex]t - [tex]\vartheta[/tex])
So I set this to 0
and I get
[tex]\omega[/tex] * a * sin([tex]\omega[/tex]t - [tex]\vartheta[/tex]) = [tex]\upsilon[/tex]*a/2 * cos ([tex]\omega[/tex]t - [tex]\vartheta[/tex])
tan ([tex]\omega[/tex]t - [tex]\vartheta[/tex]) = -[tex]\upsilon[/tex]/2[tex]\omega[/tex]
The teacher mentioned to me that from this I'm suppose to realize there are 2 solutions and from that the rest is easy..
but the rest isn't easy!
I don't understand, where and what are my 2 solutions, and from those 2 solutions how do I use them to plug into my original x equation to show that these successive maxima are just = to a constant? And how do I know these solutions are maximums and not minimums?
Last edited: