MHB Daniel's question at Yahoo Answers regarding related rates

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Related rates
AI Thread Summary
The discussion centers on calculating the rate of increase of a rectangle's area when its length is increasing at 0.4 cm/s and the length is 8 cm. The breadth is defined as one-fourth of the length, leading to the area formula A = (L/4) * L. By differentiating the area with respect to time, the formula dA/dt = (L/2) * (dL/dt) is derived. Substituting the given values results in a rate of increase of the area of 1.6 cm²/s. This calculation effectively illustrates the application of related rates in geometry.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Question on Rate of Change?

The breadth of a rectangle is 1/4 of its length. Calculate the rate of increase of the area of the rectangle when its length is increasing at the rate of 0.4 cm s^-1, at the instant the length is 8 cm.

I came out with this formula : da/dt = da/dl x dl/dt
but i didn't know how to subsitute the values into the formula. Can anyone help me with this.

Answer given : 1.6 cm2 s^-1

Here is a link to the question:

Question on Rate of Change? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Daniel,

Let's let $W$ represent the breadth (width) of the rectangle and $L$ represent the length. We are told the breadth is 1/4 the length, hence we may state:

$\displaystyle W=\frac{L}{4}$

Now, we are asked to find the rate of change of the area with respect to time, so a good place to begin is with the formula for the area of a rectangle:

$\displaystyle A=WL$

Since we are given information on the time rate of change of the length, we want to express the area as a function of the length alone, so we may substitute for the width as follows:

$\displaystyle A=\frac{L}{4}\cdot L=\left(\frac{L}{2} \right)^2$

Now, differentiating with respect to time $t$, we find:

$\displaystyle \frac{dA}{dt}=2\cdot\frac{L}{2}\cdot\frac{1}{2} \cdot\frac{dL}{dt}=\frac{L}{2}\cdot\frac{dL}{dt}$

Now, using the given data $\displaystyle \frac{dL}{dt}=0.4\,\frac{\text{cm}}{s},\,L=8\text{ cm}$, we have:

$\displaystyle \frac{dA}{dt}=\frac{\left(8\text{ cm} \right)}{2}\cdot\left(0.4\,\frac{\text{cm}}{s} \right)=1.6\,\frac{\text{cm}^2}{s}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top