- #1
karush
Gold Member
MHB
- 3,269
- 5
Find the solution of the give initial value problem
$\displaystyle y^\prime - \frac{2}{t}y
=\frac{\cos{t}}{t^2};
\quad y{(\pi)}=0, \quad t>0$$u(t)=e^{2 \ln{t}}$then
$\displaystyle e^{2\ln{t}}\, y^\prime - \frac{2e^{e^{2\ln{t}}}}{t}y
= \frac{e^{2\ln{t}}\cos{t}}{t^2}$not sure actually!
$\displaystyle y^\prime - \frac{2}{t}y
=\frac{\cos{t}}{t^2};
\quad y{(\pi)}=0, \quad t>0$$u(t)=e^{2 \ln{t}}$then
$\displaystyle e^{2\ln{t}}\, y^\prime - \frac{2e^{e^{2\ln{t}}}}{t}y
= \frac{e^{2\ln{t}}\cos{t}}{t^2}$not sure actually!