- #1
winston2020
- 35
- 0
I'm currently in grade 12 physics. For my summative project in the class (which is worth a large part of my final mark) I have to think of three separate ways to divert a large asteroid away from hitting earth. We were each given a real object and stats on the object. My first problem is that I don't know what most of the stats mean
Here's a little chart:
Object a (AU) | e | i (deg) | w (deg) | node (deg) | m (deg) | q (AU) |
1981 Midas 1.78 |0.650| 39.8 | 267.7 | 357.0 | 114.0 | 0.621 |
Q (AU) | P (yr) | H (mag) | MOID (AU) | ref | class |
2.93 | 2.37 | 15.50 | 0.003330 | 62 | APO* |
Column Headings Description:
a (AU): Semi-major axis of the orbit in AU
e: Eccentricity of the orbit
i (deg): Inclination of the orbit with repsect to the ecliptic plane and the equinox of J2000 (J2000-Ecliptic) in degrees
w(deg): Argument of the perihelion in degrees
node (deg): Longitude of the ascending node in degrees
M (deg): Mean anomoly at epoch in degrees
q (AU): Perihelion distance of the orbit in AU
Q (AU): Aphelion distance of the orbit in AU
P (yr): Orbital period in Julian years
H (mag): Absolute V-magnitude
MOID (AU): Minimum orbit intersection distance(the minimum distance between the osculating orbits of the NEO and the Earth)
ref: Orbital solution reference
class: Object classification (APO="Apollo" * indicates possible threat)
(AU): Astronomical Unit: 1.0 AU is about 1.5x10^8 km
If you guys could decipher some of these for me it'd be greatly appreciated :D
Here's a little chart:
Object a (AU) | e | i (deg) | w (deg) | node (deg) | m (deg) | q (AU) |
1981 Midas 1.78 |0.650| 39.8 | 267.7 | 357.0 | 114.0 | 0.621 |
Q (AU) | P (yr) | H (mag) | MOID (AU) | ref | class |
2.93 | 2.37 | 15.50 | 0.003330 | 62 | APO* |
Column Headings Description:
a (AU): Semi-major axis of the orbit in AU
e: Eccentricity of the orbit
i (deg): Inclination of the orbit with repsect to the ecliptic plane and the equinox of J2000 (J2000-Ecliptic) in degrees
w(deg): Argument of the perihelion in degrees
node (deg): Longitude of the ascending node in degrees
M (deg): Mean anomoly at epoch in degrees
q (AU): Perihelion distance of the orbit in AU
Q (AU): Aphelion distance of the orbit in AU
P (yr): Orbital period in Julian years
H (mag): Absolute V-magnitude
MOID (AU): Minimum orbit intersection distance(the minimum distance between the osculating orbits of the NEO and the Earth)
ref: Orbital solution reference
class: Object classification (APO="Apollo" * indicates possible threat)
(AU): Astronomical Unit: 1.0 AU is about 1.5x10^8 km
If you guys could decipher some of these for me it'd be greatly appreciated :D