Decomposing a Certain Exponential Integral

In summary, the conversation discusses the well-known identity for real theta, but questions arise when considering integrals involving e^(i*theta). The individual has been trying to use real values for a, alpha, and beta, and has derived expressions for these integrals. However, doubts arise due to the infinite integrals, and a new reference is mentioned for further exploration.
  • #1
rocdoc
Gold Member
43
3
There is nothing wrong with the well known
$$e^{i\theta}=\cos\theta+i\sin\theta$$
for real ## \theta## but what about

$$\int_{-\infty}^\infty~e^{i\theta(p)}\mathrm{d}p=\int_{-\infty}^\infty~\cos\theta(p)\mathrm{d}p+i\int_{-\infty}^\infty~\sin\theta(p)\mathrm{d}p$$
I have been trying to use, with##~a, \alpha ~and~ \beta## all real

$$\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p=\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p+i\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p$$
is this OK?
 
Physics news on Phys.org
  • #3
The integrals that you show usually will not be convergent.
 
  • #4
mathman said:
The integrals that you show usually will not be convergent.

In my case with ##~a, \alpha ~\text{and}~ \beta## all real, and with ##a## positive, I find ,
$$\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p=\sqrt \frac{ \pi} {2a} ( \cos\beta-\sin\beta )$$
$$\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p=\sqrt \frac{ \pi} {2a} ( \cos\beta+\sin\beta )$$
 
Last edited:
  • #5
I show here , details of working out the expressions for the integrals that I gave previously.
Let
$$I_{cos}=\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p~~~~~~~~~~~~(1)$$
$$I_{sin}=\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p~~~~~~~~~~~~(2)$$
Use in EQ(1)
$$\cos(~A+B~)=\cos A\cos B-\sin A\sin B $$
$$I_{cos}=\int_{-\infty}^\infty~\{\cos[a(p+\alpha)^2]\cos\beta-\sin[a(p+\alpha)^2]\sin\beta\}\mathrm{d}p~~~~~~~~~~~~$$
$$I_{cos}=\cos\beta~\int_{-\infty}^\infty~\\cos[a(p+\alpha)^2]\mathrm{d}p - \sin\beta~\int_{-\infty}^\infty~\sin[a(p+\alpha)^2]\mathrm{d}p $$
Substitute ##q=p+\alpha## giving
$$\int_{-\infty}^\infty~\\cos[a(p+\alpha)^2]\mathrm{d}p=\int_{-\infty}^\infty~\\cos(aq^2)\mathrm{d}q$$
$$\int_{-\infty}^\infty~\\sin[a(p+\alpha)^2]\mathrm{d}p=\int_{-\infty}^\infty~\\sin(aq^2)\mathrm{d}q$$
$$I_{cos}=\cos\beta~\int_{-\infty}^\infty~\\cos(aq^2)\mathrm{d}q - \sin\beta~ \int_{-\infty}^\infty~\\sin(aq^2)\mathrm{d}q$$
Use Spiegel, see Reference 1 result 15.50, which I quote '
$$15.50~~~~~~~~\int_0^\infty~\\cos(ax^2)\mathrm{d}x = \int_0^\infty~\\sin(ax^2)\mathrm{d}x= \frac{ 1} {2} \sqrt \frac{ \pi} {2a} $$
' ,for positive ##a## hence as the integrands in 15.50 are even functions of ##x##
$$\int_{-\infty}^\infty~\\cos(ax^2)\mathrm{d}x = \int_{-\infty}^\infty~\\sin(ax^2)\mathrm{d}x= \sqrt \frac{ \pi} {2a}$$
So
$$I_{cos}=\cos\beta \sqrt \frac{ \pi} {2a} - \sin\beta \sqrt \frac{ \pi} {2a} $$
$$I_{cos}= \sqrt \frac{ \pi} {2a} (\cos\beta - \sin\beta ) $$
Similarly but using in EQ(2)
$$\sin(~A+B~)=\sin A\cos B+\cos A\sin B $$
$$I_{sin}= \sqrt \frac{ \pi} {2a} (\cos\beta + \sin\beta ) $$
Reference
1) M. R. Spiegel, Ph.D. , Mathematical Handbook , McGraw-Hill , Inc. , 1968.
 
  • #6
I don't suppose
$$\tan \beta = \frac{(\cos\beta + \sin\beta) } {(\cos\beta - \sin\beta) }$$
It would be really nice if it were.
 
  • #7
I have been trying to use, with##~a, \alpha ~\text{and}~ \beta## all real , and ##a## positive, the following
$$\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p=\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p+i\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p$$
$$ =I_{cos} + i~I_{sin}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$= \sqrt \frac{ \pi} {2a} (\cos\beta - \sin\beta ) +i \sqrt \frac{ \pi} {2a} (\cos\beta + \sin\beta ) $$
$$ =I_{Tot}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
So
$$ I_{Tot}=I_{cos}+i~I_{sin}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$$
$$= \sqrt \frac{ \pi} {2a} (\cos\beta - \sin\beta ) +i \sqrt \frac{ \pi} {2a} (\cos\beta + \sin\beta ) $$
I show here , some details of working out a polar form for ##I_{Tot}## .
For any complex number ##z##
$$z=c+i~d~~; ~ z=re^{i\theta}~~~\text{where}~r=\sqrt{c^2+d^2},\theta=tan^{-1}\frac{d}{c}$$
Put
$$z=I_{Tot}~; c=\sqrt \frac{ \pi} {2a} (\cos\beta - \sin\beta ) ;~d= \sqrt \frac{ \pi} {2a} (\cos\beta + \sin\beta )$$
$$r=\sqrt{ \frac{ \pi} {a}}$$
$$\theta=tan^{-1}(\frac{ \cos\beta + \sin\beta }{ \cos\beta - \sin\beta })$$
Putting the above together
$$I_{Tot}=\sqrt { \frac{ \pi} {a}} \exp (i~tan^{-1}(\frac{ \cos\beta + \sin\beta }{ \cos\beta - \sin\beta })~~)$$
 
  • #8
The integral of the absolute value of the integrands are infinite, so I was a little skeptical. However, your derivation seems to be correct.
 
  • Like
Likes rocdoc
  • #9
jedishrfu said:
Have you run into a problem?
I have started to try to get into path integral formalism in quantum field theory. One thing I have tried to do is to prove a result from Kaku, reference 2, in the way that the author seems to suggest,from Kaku I quote'
$$\int_{-\infty}^\infty~\mathrm{d}p~e^{iap^2+ibp}=\sqrt \frac{i\pi}{a}e^{-ib^2/4a}~~~~~~~~~~~~~(8.18)$$
'. Kaku says this result can be proved by completing the square.The way I have gone about this , is the following.
$$iap^2+ibp = ia(p^2+\frac{b}{a}p )$$
$$~~~~~~~~~~~~~~~~~~~~~~~~=ia[~(p+\frac{b}{2a})^2-\frac{b^2}{4a^2}]$$
Let
$$\frac{b}{2a}=\alpha~~~~~~~~~(3)$$
$$\frac{-b^2}{4a}=\beta~~~~~~~~~~(4)$$
$$iap^2+ibp = i[~a(p+\alpha)^2~+~\beta]$$
$$\int_{-\infty}^\infty~\mathrm{d}p~e^{iap^2+ibp}=\int_{-\infty}^\infty~e^{ i[~a(p+\alpha)^2~+~\beta] }\mathrm{d}p~~~~~~~(5)$$
The integrals in EQ(5) are what have been called ##I_{Tot}##. According to EQ(8.18)
$$I_{Tot}=\sqrt \frac{i\pi}{a}e^{-ib^2/4a}~~~~~~~~$$
$$~~~~~~~~~~=\sqrt \frac{i\pi}{a}\exp(i\beta)~~~~~~~~~(6)$$
However , what has been derived in this thread is
$$I_{Tot}=\sqrt { \frac{ \pi} {a}} \exp (i~tan^{-1}(\frac{ \cos\beta + \sin\beta }{ \cos\beta - \sin\beta })~~)~~~~~~(7)$$

I have a problem with the above (for example).Reference:
2) M.Kaku , QuantumField Theory, A Modern Introduction , Oxford University Press, Inc. , 1993.
 
  • #10
One thing I should change is, I should put

$$\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p=e^{i\beta}\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2]}\mathrm{d}p$$
 
  • #11
It's looking good now.
 
  • #12
Perhaps even EQ(7) is correct?
 

FAQ: Decomposing a Certain Exponential Integral

What is a certain exponential integral?

A certain exponential integral is a type of mathematical function that involves an exponential term raised to a power. It is commonly used in physics, engineering, and other scientific fields to model systems with exponential growth or decay.

Why is it important to study the decomposition of a certain exponential integral?

Studying the decomposition of a certain exponential integral can help us understand the behavior of systems that exhibit exponential growth or decay. It also allows us to simplify complex functions and make them easier to analyze and solve.

What is the process of decomposing a certain exponential integral?

The process of decomposing a certain exponential integral involves breaking it down into smaller, simpler functions that can be integrated or differentiated more easily. This is typically done using techniques such as substitution, integration by parts, and partial fractions.

What are some applications of decomposing a certain exponential integral?

Decomposing a certain exponential integral has many practical applications in fields such as physics, engineering, and economics. It is often used to model population growth, radioactive decay, and financial investments.

Are there any limitations or challenges to decomposing a certain exponential integral?

While decomposing a certain exponential integral can be a useful tool, it may not always be possible to find an exact solution. In some cases, the integral may have to be approximated using numerical methods. Additionally, the process of decomposition may be complex and time-consuming for more complicated functions.

Similar threads

Replies
3
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
8
Views
572
Back
Top