- #1
rocdoc
Gold Member
- 43
- 3
There is nothing wrong with the well known
$$e^{i\theta}=\cos\theta+i\sin\theta$$
for real ## \theta## but what about
$$\int_{-\infty}^\infty~e^{i\theta(p)}\mathrm{d}p=\int_{-\infty}^\infty~\cos\theta(p)\mathrm{d}p+i\int_{-\infty}^\infty~\sin\theta(p)\mathrm{d}p$$
I have been trying to use, with##~a, \alpha ~and~ \beta## all real
$$\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p=\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p+i\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p$$
is this OK?
$$e^{i\theta}=\cos\theta+i\sin\theta$$
for real ## \theta## but what about
$$\int_{-\infty}^\infty~e^{i\theta(p)}\mathrm{d}p=\int_{-\infty}^\infty~\cos\theta(p)\mathrm{d}p+i\int_{-\infty}^\infty~\sin\theta(p)\mathrm{d}p$$
I have been trying to use, with##~a, \alpha ~and~ \beta## all real
$$\int_{-\infty}^\infty~e^{i[a(p+\alpha)^2+\beta]}\mathrm{d}p=\int_{-\infty}^\infty~\cos[a(p+\alpha)^2+\beta]\mathrm{d}p+i\int_{-\infty}^\infty~\sin[a(p+\alpha)^2+\beta]\mathrm{d}p$$
is this OK?