- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey! (Wave)
If $x \neq y $, define the sets $\bigcup \langle x,y \rangle , \bigcup \bigcup \langle x,y \rangle$.
According to my notes, it is like that:
$$\langle x,y \rangle= \{ \{x\}, \{x,y\} \} $$
$$ \bigcup \langle x,y \rangle=\{x,y\} $$
$$ \bigcup \bigcup \langle x,y \rangle=x \cup y$$
Why is it $ \bigcup \bigcup \langle x,y \rangle=x \cup y$ and not $\bigcup \bigcup \langle x,y \rangle=\{x,y\}$ ? (Thinking)
If $x \neq y $, define the sets $\bigcup \langle x,y \rangle , \bigcup \bigcup \langle x,y \rangle$.
According to my notes, it is like that:
$$\langle x,y \rangle= \{ \{x\}, \{x,y\} \} $$
$$ \bigcup \langle x,y \rangle=\{x,y\} $$
$$ \bigcup \bigcup \langle x,y \rangle=x \cup y$$
Why is it $ \bigcup \bigcup \langle x,y \rangle=x \cup y$ and not $\bigcup \bigcup \langle x,y \rangle=\{x,y\}$ ? (Thinking)