- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $M$ be a measure space and $(a_i)_{i\in \mathbb{N}}\subset M$. I want to show that for positive $p_1, \ldots , p_n$ with $\displaystyle{\sum_{i=1}^np_i=1}$ by $\displaystyle{Q=\sum_{i=1}^np_i\delta_{a_i}}$ a probability distribution is defined. Do we have to show that $$Q(x)=P(X=x)=\left\{\begin{matrix}
p_i & \text{ for } x=x_i, \ (i=1, 2, \ldots , n) \\
0 & \text{ otherwise }
\end{matrix}\right.$$ where $\displaystyle{\sum_{i=1}^np_i=1}$ ? (Wondering) We have the following:
Since $\delta_{a_i}(x)=\left\{\begin{matrix}
1 & \text{ if } x\in a_i \\
0 & \text{ otherwise }
\end{matrix}\right.$
we get
$$Q(x)=\sum_{i=1}^np_i\delta_{a_i}(x)=\sum_{i=1}^n\left (p_i\cdot \left\{\begin{matrix}
1 & \text{ if } x\in a_i \\
0 & \text{ otherwise }
\end{matrix}\right.\right )$$
Is this correct so far? How could we continue? (Wondering)
Let $M$ be a measure space and $(a_i)_{i\in \mathbb{N}}\subset M$. I want to show that for positive $p_1, \ldots , p_n$ with $\displaystyle{\sum_{i=1}^np_i=1}$ by $\displaystyle{Q=\sum_{i=1}^np_i\delta_{a_i}}$ a probability distribution is defined. Do we have to show that $$Q(x)=P(X=x)=\left\{\begin{matrix}
p_i & \text{ for } x=x_i, \ (i=1, 2, \ldots , n) \\
0 & \text{ otherwise }
\end{matrix}\right.$$ where $\displaystyle{\sum_{i=1}^np_i=1}$ ? (Wondering) We have the following:
Since $\delta_{a_i}(x)=\left\{\begin{matrix}
1 & \text{ if } x\in a_i \\
0 & \text{ otherwise }
\end{matrix}\right.$
we get
$$Q(x)=\sum_{i=1}^np_i\delta_{a_i}(x)=\sum_{i=1}^n\left (p_i\cdot \left\{\begin{matrix}
1 & \text{ if } x\in a_i \\
0 & \text{ otherwise }
\end{matrix}\right.\right )$$
Is this correct so far? How could we continue? (Wondering)