Definite integral as Riemann sums

Click For Summary
The discussion focuses on calculating the definite integral of ##\int_{0}^{2}\sqrt{x}dx## using left Riemann sums. Participants clarify the formula for Riemann sums and point out issues with the infinite series involved in the calculation. There is confusion regarding the summation of square roots and whether the series can be summed exactly or approximated. Suggestions are made to simplify the approach by observing the behavior of the sums rather than attempting to compute them directly. The conversation emphasizes the complexity of the problem and the challenges in finding an exact solution.
terryds
Messages
392
Reaction score
13

Homework Statement



Determine ##\int_{0}^{2}\sqrt{x}dx## using left riemann sums

Homework Equations



##\int_{a}^{b}f(x)dx = \lim_{n\rightarrow \infty}\sum_{i=0}^{n-1}(\frac{b-a}{n})f(x_i)##

The Attempt at a Solution


[/B]
##\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n}##
##\int_{0}^{2}\sqrt{x}dx = \lim_{n\rightarrow \infty}\frac{2}{n}(0+ \frac{\sqrt{2}}{n}+\frac{\sqrt{4}}{n}+...) =\lim_{n\rightarrow \infty}\frac{2}{n} \frac{\sqrt{2}}{n}(\sqrt{0} + \sqrt{1}+\sqrt{2}+\sqrt{3}+...) ##

I'm stuck now. Please help. I don't know how to get the sums of the infinite radical series
 
Physics news on Phys.org
terryds said:

Homework Statement



Determine ##\int_{0}^{2}\sqrt{x}dx## using left riemann sums

Homework Equations



##\int_{a}^{b}f(x)dx = \lim_{n\rightarrow \infty}\sum_{i=0}^{n-1}(\frac{b-a}{n})f(x_i)##

The Attempt at a Solution


[/B]
##\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n}##
##\int_{0}^{2}\sqrt{x}dx = \lim_{n\rightarrow \infty}\frac{2}{n}(0+ \frac{\sqrt{2}}{n}+\frac{\sqrt{4}}{n}+...) =\lim_{n\rightarrow \infty}\frac{2}{n} \frac{\sqrt{2}}{\color{red}n}(\sqrt{0} + \sqrt{1}+\sqrt{2}+\sqrt{3}+...) ##

I'm stuck now. Please help. I don't know how to get the sums of the infinite radical series

I think you may want a square root on that ##n## I colored red. But to answer your question, that is not a trivial sum to calculate, and I wouldn't expect to see this problem in a typical calculus exercise set. See, for example,
http://math.stackexchange.com/questions/1241864/sum-of-square-roots-formula
 
  • Like
Likes terryds
terryds said:

Homework Statement



Determine ##\int_{0}^{2}\sqrt{x}dx## using left riemann sums

Homework Equations



##\int_{a}^{b}f(x)dx = \lim_{n\rightarrow \infty}\sum_{i=0}^{n-1}(\frac{b-a}{n})f(x_i)##

The Attempt at a Solution


[/B]
##\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n}##
##\int_{0}^{2}\sqrt{x}dx = \lim_{n\rightarrow \infty}\frac{2}{n}(0+ \frac{\sqrt{2}}{n}+\frac{\sqrt{4}}{n}+...) =\lim_{n\rightarrow \infty}\frac{2}{n} \frac{\sqrt{2}}{n}(\sqrt{0} + \sqrt{1}+\sqrt{2}+\sqrt{3}+...) ##
The sums in the last two expressions above do not have an infinite number of terms. What's the last term in each sum?
terryds said:
I'm stuck now. Please help. I don't know how to get the sums of the infinite radical series
 
  • Like
Likes terryds
Mark44 said:
The sums in the last two expressions above do not have an infinite number of terms. What's the last term in each sum?
LCKurtz said:
I think you may want a square root on that ##n## I colored red. But to answer your question, that is not a trivial sum to calculate, and I wouldn't expect to see this problem in a typical calculus exercise set. See, for example,
http://math.stackexchange.com/questions/1241864/sum-of-square-roots-formula

##\lim_{n\rightarrow \infty }\frac{2}{n}\sqrt{\frac{2}{n}}(\sqrt{0} + \sqrt{1} + \sqrt{2} + ... + \sqrt{\frac{2}{n}}(n-1)))##

Alright, I've fixed my mistakes. And, I'm still confused how to get the sum of that series
 
terryds said:
##\lim_{n\rightarrow \infty }\frac{2}{n}\sqrt{\frac{2}{n}}(\sqrt{0} + \sqrt{1} + \sqrt{2} + ... + \sqrt{\frac{2}{n}}(n-1)))##

Alright, I've fixed my mistakes. And, I'm still confused how to get the sum of that series

You should go back and read post #2, which explains why you probably cannot sum the series, no matter how hard you try. Of course, you may be able to find good approximations to the sum, but that is not the same as finding an exact value.
 
  • Like
Likes terryds
Doing the sum is overkill for finding the limit.
I think you have an error I think you should have
$$\int_0^2 \! \sqrt{n} \, \mathrm{d}x=\lim_{n\rightarrow\infty} {\left( \frac{n}{2} \right)}^{-3/2}\sum_{i=1}^n \sqrt{n}$$
Instead of finding the sum we will make a few observations that suffice
we can replace the sum in the limit by a simple expression
$$\sum_{i=1}^n \sqrt{n}\sim {C} {\sqrt{n}}^3$$
The exponent is the only one that allows the limit to converge to a nonzero value
we find C by computing the limit
$$C=\lim_{n\rightarrow\infty}\frac{{\sqrt{n}}}{{\sqrt{n+1}}^3-{\sqrt{n}}^3}$$
because we must have
$$\sum_{i=1}^{n+1} \sqrt{n}-\sum_{i=1}^n \sqrt{n}\sim {\sqrt{n}}$$
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
17
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K