- #1
terryds
- 392
- 13
Homework Statement
Determine ##\int_{0}^{2}\sqrt{x}dx## using left riemann sums
Homework Equations
##\int_{a}^{b}f(x)dx = \lim_{n\rightarrow \infty}\sum_{i=0}^{n-1}(\frac{b-a}{n})f(x_i)##
The Attempt at a Solution
[/B]
##\frac{b-a}{n}=\frac{2-0}{n}=\frac{2}{n}##
##\int_{0}^{2}\sqrt{x}dx = \lim_{n\rightarrow \infty}\frac{2}{n}(0+ \frac{\sqrt{2}}{n}+\frac{\sqrt{4}}{n}+...) =\lim_{n\rightarrow \infty}\frac{2}{n} \frac{\sqrt{2}}{n}(\sqrt{0} + \sqrt{1}+\sqrt{2}+\sqrt{3}+...) ##
I'm stuck now. Please help. I don't know how to get the sums of the infinite radical series