- #1
caffeinemachine
Gold Member
MHB
- 816
- 15
Problem: Evaluate
$$
\int_{0}^\infty \frac{e^{3x} - e^x}{x(e^x + 1)(e^{3x} + 1)}\ dx
$$
Attempt.
I substituted $y=e^x$, thus $dx = dy/y$, which turns the above integral to
$$
\int_{1}^\infty \frac{y^2 - 1}{(\log y)(y+1)(y^3+1)}\ dy = \int_{1}^\infty \frac{y-1}{(\log y) (y^3+1)} \ dy
$$
I am unable to make progress.
Thanks.
$$
\int_{0}^\infty \frac{e^{3x} - e^x}{x(e^x + 1)(e^{3x} + 1)}\ dx
$$
Attempt.
I substituted $y=e^x$, thus $dx = dy/y$, which turns the above integral to
$$
\int_{1}^\infty \frac{y^2 - 1}{(\log y)(y+1)(y^3+1)}\ dy = \int_{1}^\infty \frac{y-1}{(\log y) (y^3+1)} \ dy
$$
I am unable to make progress.
Thanks.