Definite Integral of a Rational Function

In summary, the definite integral of a rational function is a tool used to find the area under the curve of a function between two specified points on the x-axis. It is calculated by finding the antiderivative of the function and plugging in the upper and lower limits of integration. The definite integral is the sum of all the infinitesimal areas under the curve and is used in real-world scenarios such as physics, chemistry, economics, and probability and statistics. The properties of definite integrals of rational functions include linearity and the power rule.
  • #1
Euge
Gold Member
MHB
POTW Director
2,073
243
Evaluate the definite integral $$\int_0^\infty \frac{x^2 + 1}{x^4 + 1}\, dx$$
 
Physics news on Phys.org
  • #2
[tex]z^4=-1[/tex] has the solutions
[tex]z=e^{i\pi/4},e^{i3\pi/4},e^{-i3\pi/4},e^{-i\pi/4}[/tex]
[tex]\int_0^\infty \frac{x^2+1}{x^4+1}dx=\frac{1}{2}\int_{-\infty}^\infty \frac{x^2+1}{x^4+1}dx[/tex]
by complex integral along the real axis and upper semicircle contour
[tex]=i\pi [\ Res (\frac{z^2+1}{z^4+1},e^{i\pi/4})+ \ Res (\frac{z^2+1}{z^4+1},e^{i3\pi/4})]=\frac{\pi}{\sqrt{2}}[/tex]

Another approach:
transforming x by
[tex]x=\tan\theta[/tex]
The integral is
[tex]\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=\sum_{n=0}^\infty (-1)^n \int_0^\pi \cos^{2n}\phi d\phi=\pi \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!}[/tex]
where
[tex]\phi=2\theta[/tex]
The series converges slowly. The sum from n=0 upto 50,000 gives the estimation between 0.7058
and 0.7083 for the expected ##1/\sqrt{2}##=0.70710...

Or not in series,
[tex]\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=2\int_0^\infty \frac{dt}{2+t^2}=\sqrt{2}[\arctan \ s]^\infty_0=\frac{\pi}{\sqrt{2}}[/tex]
where
[tex]t=\tan \phi[/tex]
[tex]s=\frac{t}{\sqrt{2}}[/tex]
 
Last edited:
  • #3
anuttarasammyak said:
Another approach:
transforming x by
[tex]x=\tan\theta[/tex]
The integral is
[tex]\int_0^\pi \frac{d\phi}{1+\cos^2 \phi}=\sum_{n=0}^\infty (-1)^n \int_0^\pi \cos^{2n}\phi d\phi=\pi \sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!}[/tex]
where
[tex]\phi=2\theta[/tex]
The series converges slowly. The sum from n=0 upto 50,000 gives the estimation between 0.7058
and 0.7083 for the expected ##1/\sqrt{2}##=0.70710...
Using ##(2n)!! = 2n (2n-2) \cdots 2 = 2^n n!##,

\begin{align*}
\sum_{n=0}^\infty (-1)^n \frac{(2n-1)!!}{(2n)!!} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n}
\end{align*}

We have

\begin{align*}
\frac{1}{\sqrt{x+1}} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n} x^n
\end{align*}

So that

\begin{align*}
\frac{1}{\sqrt{2}} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \frac{(2n-1)!!}{2^n} .
\end{align*}
 
Last edited:
  • Like
Likes anuttarasammyak
  • #4
I think you can do it in the first quadrant as the limit as [itex]R \to \infty[/itex] of [tex]
\oint_C \frac{1 + z^2}{1 + z^4}\,dz = \underbrace{\int_0^R \frac{1 + x^2}{1 + x^4}\,dx}_{\mbox{real}} - i \underbrace{\int_0^R \frac{1 - y^2}{1 + y^4}\,dy}_{\mbox{real}} + \underbrace{\int_0^{\pi/2} \frac{1 + R^2e^{2it}}{1 + R^4e^{4it}}iRe^{it}\,dt}_{=O(R^{-1})}[/tex] which reduces to [tex]
\DeclareMathOperator*{\Res}{\operatorname{Res}}
\int_0^\infty \frac{1 + x^2}{1 + x^4}\,dx = \operatorname{Re} \left(2\pi i \Res\limits_{z = e^{i\pi/4}} \frac{1 + z^2}{1 + z^4}\right).[/tex]
 
  • #5
Method #1

Using ##u = x^4##,

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx = \frac{1}{4} \int_0^\infty \dfrac{u^{-1/4}+u^{-3/4}}{u+1} du \qquad (*)
\end{align*}

Here:

www.physicsforums.com/threads/exponential-type-integrals.1046843/

in post #12 I proved that, if ##0< a < 1##, then

$$
\int_0^\infty \frac{u^{a-1}}{1+u} du = \frac{\pi}{\sin a \pi}
$$

Using this in ##(*)##, we have

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx & = \frac{\pi}{4} \left( \frac{1}{\sin 3 \pi / 4} + \frac{1}{\sin \pi / 4} \right)
\nonumber \\
& = \frac{\pi}{\sqrt{2}}
\end{align*}Method #2:

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} dx & = \int_0^\infty \dfrac{1 + \dfrac{1}{x^2}}{x^2 + \dfrac{1}{x^2}} dx
\nonumber \\
& = \int_0^\infty \dfrac{1 + \dfrac{1}{x^2}}{\left( x - \dfrac{1}{x} \right)^2 + 2} dx
\nonumber \\
& = \int_0^\infty \dfrac{d \left( x - \dfrac{1}{x} \right)}{\left( x - \dfrac{1}{x} \right)^2 + 2}
\nonumber \\
& = \int_{-\infty}^\infty \dfrac{d u}{u^2 + 2}
\nonumber \\
& = \frac{1}{\sqrt{2}} \int_{-\infty}^\infty \dfrac{d u}{u^2 + 1}
\nonumber \\
& = \frac{\pi}{\sqrt{2}} .
\end{align*}Method #3

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} d x & = \frac{1}{2} \int_0^\infty \frac{1}{x^2 - \sqrt{2} x + 1} dx + \frac{1}{2} \int_0^\infty \frac{1}{x^2 + \sqrt{2} x + 1} dx
\nonumber \\
& = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{x^2 - \sqrt{2} x + 1} dx
\nonumber \\
& = \frac{1}{2} \int_{-\infty}^\infty \frac{1}{\left( x - \frac{1}{\sqrt{2}} \right)^2 + \frac{1}{2}} dx
\end{align*}

Using ##u = x - \frac{1}{\sqrt{2}}##, the above becomes

\begin{align*}
\int_0^\infty \dfrac{x^2 + 1}{x^4 + 1} d x & = \int_{-\infty}^\infty \frac{1}{2 u^2 + 1} du
\nonumber \\
& = \frac{\pi}{\sqrt{2}} .
\end{align*}
 
  • Like
Likes dextercioby
  • #6
julian said:
Method #1

Using ##u = x^4##,

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx = \frac{1}{4} \int_0^\infty \dfrac{u^{-1/4}+u^{-3/4}}{u+1} du \qquad (*)
\end{align*}

Here:

www.physicsforums.com/threads/exponential-type-integrals.1046843/

in post #12 I proved that, if ##0< a < 1##, then

$$
\int_0^\infty \frac{u^{a-1}}{1+u} du = \frac{\pi}{\sin a \pi}
$$

Using this in ##(*)##, we have

\begin{align*}
\int_0^\infty \dfrac{x^2+1}{x^4+1} dx & = \frac{\pi}{4} \left( \frac{1}{\sin 3 \pi / 4} + \frac{1}{\sin \pi / 4} \right)
\nonumber \\
& = \frac{\pi}{\sqrt{2}}
\end{align*}

In method #1, doing the contour integration directly also gets the value of [tex]
\int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx.[/tex]

Placing a branch cut along the positive real axis so that [itex]0 \leq \arg z < 2\pi[/itex], we can calculate [tex]
\frac14\oint_C \frac{z^{-3/4} + z^{-1/4}}{1 + z}\,dz = \frac{\pi i}2 \left( e^{-\frac34 \pi i} + e^{-\frac14 \pi i} \right) = \frac{\pi}{\sqrt 2}[/tex] where [itex]C[/itex] conists of the positive real axis ([itex]\arg z = 0[/itex]), a large circle of radius [itex]R[/itex] about the origin, the positive real axis ([itex]\arg z \to 2\pi^{-}[/itex]) and a small circle of radius [itex]\epsilon[/itex] about the origin. In the limit [itex]R \to \infty[/itex] and [itex]\epsilon \to 0[/itex] the contributions from the circles vanish and we are left with [tex]\begin{split}
\frac14 \oint_C \frac{z^{-3/4} + z^{-1/4}}{1 + z}\,dz &=
\frac14\int_0^\infty \frac{u^{-3/4} + u^{-1/4}}{1 + u}\,du - \frac i4\int_0^\infty \frac{u^{-3/4} - u^{-1/4}}{1 + u}\,du \\
&= \int_0^\infty \frac{1 + x^2}{1 + x^4}\,dx - i \int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx. \end{split}
[/tex] Taking real and imaginary parts gives the results.
 
  • #7
pasmith said:
In method #1, doing the contour integration directly also gets the value of [tex]
\int_0^\infty \frac{1 - x^2}{1 + x^4}\,dx.[/tex]
Yes, you get out the additional result:

\begin{align*}
\int_0^\infty \frac{1-x^2}{1+x^4} dx = 0
\end{align*}

You can see this also by doing ##y=1/x## in the following integral:

\begin{align*}
\int_0^\infty \frac{1}{1+x^4} dx = \int_0^\infty \frac{y^2}{1+y^4} dy
\end{align*}
 

Similar threads

Replies
11
Views
1K
Replies
1
Views
2K
Replies
3
Views
1K
Replies
3
Views
1K
Replies
8
Views
1K
Replies
2
Views
2K
Back
Top