- #1
Steve Turchin
- 11
- 0
Homework Statement
##\int_{-\infty} ^{\infty} dx \int_{-\infty} ^{\infty} dy \ \ e^{-3x^2+2xy-3y^2} ##
Homework Equations
## \int_{-\infty} ^{\infty} dx \int_{-\infty} ^{\infty} dy \ \ e^{-x^2-y^2} = \pi ##
The Attempt at a Solution
##3x^2-2xy+3y^2 = (x,y)
\left( \begin{array}{ccc}
3 & -1 \\
-1 & 3 \end{array} \right)
\left( \begin{array}{ccc}
x \\
y \end{array} \right) = \\
=(x',y')
\left( \begin{array}{ccc}
2 & 0 \\
0 & 4 \end{array} \right)
\left( \begin{array}{ccc}
x' \\
y' \end{array} \right) = 2x'^2+4y'^2 \\
\\ \\
## I got this far, I know the solution but I don't understand what is done here:
(copied answer from my tutor):
Why is this suddenly an indefinite integral? (or maybe it's just a ## \LaTeX ## mistake?) :
## I = \int dx \int dy \ \ e^{-2x^2-4y^2} ##
And why can this be changed to :
##\frac{1}{2\sqrt{2}} \int_{-\infty} ^{\infty} dx \int_{-\infty} ^{\infty} dy \ \ e^{-x^2-y^2} \\
=\frac{\pi}{2\sqrt{2}}
##