- #1
Dethrone
- 717
- 0
\(\displaystyle \d{}{x}\frac{1}{\sqrt{x}}\) by the definition of the derivative.
$$\lim_{{h}\to{0}}\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h}=\lim_{{h}\to{0}}\frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x^2+2xh}}=\lim_{{h}\to{0}}\frac{x-(x+h)}{h\sqrt{x^2+2xh}\left(\sqrt{x}+\sqrt{x+h}\right)}$$
Setting $h=0$:
$$=\frac{-1}{2\sqrt{x^2}(\sqrt{x})}$$
Question is why do we assume $x>0$?
EDIT: Wait. dumb question, $x$ is only defined for $x>0$ (Headbang)
$$\lim_{{h}\to{0}}\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h}=\lim_{{h}\to{0}}\frac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x^2+2xh}}=\lim_{{h}\to{0}}\frac{x-(x+h)}{h\sqrt{x^2+2xh}\left(\sqrt{x}+\sqrt{x+h}\right)}$$
Setting $h=0$:
$$=\frac{-1}{2\sqrt{x^2}(\sqrt{x})}$$
Question is why do we assume $x>0$?
EDIT: Wait. dumb question, $x$ is only defined for $x>0$ (Headbang)