- #1
patric44
- 308
- 40
- Homework Statement
- confusion about the definition of angular frequency in nuclear structure
- Relevant Equations
- E=hbar omega
Hi all
I am a little bit confused about the definition of angular frequency in the context of nuclear rotation, some times its defined in the regular way as
$$
E=\hbar \omega
$$
and other time from the rigid rotor formula
$$
E=\frac{\hbar^{2}}{2I} J(J+1)
$$
where ##I## is the moment of inertia and ##J## is the angular momentum quantum number, then I saw omega defined as:
$$
\omega =\frac{1}{\hbar} \frac{dE}{d\sqrt{J(J+1)}}
$$
why the two definitions? any help on that
I am a little bit confused about the definition of angular frequency in the context of nuclear rotation, some times its defined in the regular way as
$$
E=\hbar \omega
$$
and other time from the rigid rotor formula
$$
E=\frac{\hbar^{2}}{2I} J(J+1)
$$
where ##I## is the moment of inertia and ##J## is the angular momentum quantum number, then I saw omega defined as:
$$
\omega =\frac{1}{\hbar} \frac{dE}{d\sqrt{J(J+1)}}
$$
why the two definitions? any help on that
Last edited: