- #1
Carla1985
- 94
- 0
Hi all,
I have the definition of a linear transformation in terms of a transformation matrix. So the mapping is a function $f:\mathbb{R}^m\rightarrow\mathbb{R}^n$, where $f(\textbf{x})=A\textbf{x}$ and $A$ is a $n\times m$ matrix.
I'm looking for a similar definition for a transformation that takes a matrix to another matrix. I.e a $2\times 2$ matrix to a $4\times 4$ one. I think the mapping will be of the form $sAs^T$, where $s$ is a matrix but I'm sure there's more to it than that.
Also when doing a linear transformation I can say that if I want to take the first element of $\textbf{x}$ to the third element of $f(\textbf{x})$ then there will be a $1$ in the first column and third row of $A$. Ideally I would like a similar explanation for the matrix transformation.
Can someone point me in the right direction please.
Thanks
Carla
I have the definition of a linear transformation in terms of a transformation matrix. So the mapping is a function $f:\mathbb{R}^m\rightarrow\mathbb{R}^n$, where $f(\textbf{x})=A\textbf{x}$ and $A$ is a $n\times m$ matrix.
I'm looking for a similar definition for a transformation that takes a matrix to another matrix. I.e a $2\times 2$ matrix to a $4\times 4$ one. I think the mapping will be of the form $sAs^T$, where $s$ is a matrix but I'm sure there's more to it than that.
Also when doing a linear transformation I can say that if I want to take the first element of $\textbf{x}$ to the third element of $f(\textbf{x})$ then there will be a $1$ in the first column and third row of $A$. Ideally I would like a similar explanation for the matrix transformation.
Can someone point me in the right direction please.
Thanks
Carla