- #1
jfy4
- 649
- 3
Hi,
I have a question about the formulation of the derivative. The definition is
[tex]f'(x_0)=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}[/itex]
Lets say this limit exists. Can I write the limit in the typical [itex]\epsilon-\delta[/itex] method as such
Given the limit exists, then for all [itex]\epsilon>0[/itex] there exists a [itex]\delta>0[/itex] such that [itex]|x-x_0|<\delta\implies[/itex]
[tex]\left|\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)\right|<\epsilon[/tex]
?
I have a question about the formulation of the derivative. The definition is
[tex]f'(x_0)=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}[/itex]
Lets say this limit exists. Can I write the limit in the typical [itex]\epsilon-\delta[/itex] method as such
Given the limit exists, then for all [itex]\epsilon>0[/itex] there exists a [itex]\delta>0[/itex] such that [itex]|x-x_0|<\delta\implies[/itex]
[tex]\left|\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)\right|<\epsilon[/tex]
?