A Degenerate Perturbation Theory: Correction to the eigenstates

Kaguro
Messages
221
Reaction score
57
TL;DR Summary
Using the "good" states, which are eigenstates of H0 and V simultaneously, we can avoid the infinite coefficients and find the correct energy shifts. But how to find the correct state shifts? The coefficients now are in 0/0 form instead of infinity.
Given the unperturbed Hamiltonian ##H^0## and a small perturbating potential V. We have solved the original problem and have gotten a set of eigenvectors and eigenvalues of ##H^0##, and, say, two are degenerate:
$$ H^0 \ket a = E^0 \ket a$$
$$ H^0 \ket b = E^0 \ket b$$

Let's make them orthonormal. Here the first order state correction coefficients ## \sum_{m \neq n} \frac{\bra m V \ket n}{E_n - E_m} ## blow up when considering two kets from our degenerate eigenspace. To "solve" this problem, we want the numerator to be 0 as well. This is only possible if they are eigenkets of V as well. So, let's construct two new orthonormal vectors ##\ket c## and ##\ket d## from old ones. Still in the same eigenspace.

## H^0 \ket c = E^0 \ket c##
## H^0 \ket c = E^0 \ket c##

but now,
## V \ket c = c\ket c##
## V \ket d = d\ket d##

Now, ##\bra c V \ket d = \bra c d \ket d = d \bra c \ket d = 0## (since these are orthonormal.)

Now, using new vectors, we form another complete basis, and we can find the first order corrections to energy. But, we STILL can't find the first order corrections to the states, because these new vectors are STILL in that same stinking eigenspace and have the same energy. When we try to find the first order correction of the eigenstate ##\ket c## in the direction of ##\ket d## we're stuck. Maybe the other directions are fine, but not along ##\ket d##. Now we end up with 0/0 form instead of infinity...

How did this ordeal help us if we can't find the new eigenstates of the complete Hamiltonian?

Any help will be very much appreciated.
 
Physics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top