- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! I want to calculate the degree $[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}]$.
It holds that $$[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}][\mathbb{Q}[\sqrt{3}] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}]]\cdot 2$$ and $$[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]][\mathbb{Q}[\rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]]\cdot 4$$ since we know that the polynomial $f=x^4-2x^2-1\in \mathbb{Q}[x]$ is irreducible, and $\rho\in \mathbb{C}$ is a root of $f$.
When we divide these two relations we get $[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}]]=2[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]]$.
From that we get that $[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}]]\geq 2$ and it is even, right? (Wondering)
It holds that $[\mathbb{Q}[\sqrt{3}, \rho]:\mathbb{Q}] \leq [\mathbb{Q}[\sqrt{3}] :\mathbb{Q}]\cdot [\mathbb{Q}[\rho] :\mathbb{Q}]$, or not? (Wondering)
Therefore, we get that
$[\mathbb{Q}[\sqrt{3}, \rho]:\mathbb{Q}]\leq 8$.
From $$[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]][\mathbb{Q}[\rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]]\cdot 4$$
we get that $[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]]$ is either $1$ or $2$. So $[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}]]$ is either $2$ or $4$.
How could we continue? (Wondering)
It holds that $$[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}][\mathbb{Q}[\sqrt{3}] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}]]\cdot 2$$ and $$[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]][\mathbb{Q}[\rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]]\cdot 4$$ since we know that the polynomial $f=x^4-2x^2-1\in \mathbb{Q}[x]$ is irreducible, and $\rho\in \mathbb{C}$ is a root of $f$.
When we divide these two relations we get $[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}]]=2[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]]$.
From that we get that $[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}]]\geq 2$ and it is even, right? (Wondering)
It holds that $[\mathbb{Q}[\sqrt{3}, \rho]:\mathbb{Q}] \leq [\mathbb{Q}[\sqrt{3}] :\mathbb{Q}]\cdot [\mathbb{Q}[\rho] :\mathbb{Q}]$, or not? (Wondering)
Therefore, we get that
$[\mathbb{Q}[\sqrt{3}, \rho]:\mathbb{Q}]\leq 8$.
From $$[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]][\mathbb{Q}[\rho] :\mathbb{Q}]=[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]]\cdot 4$$
we get that $[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\rho]]$ is either $1$ or $2$. So $[\mathbb{Q}[\sqrt{3}, \rho] :\mathbb{Q}[\sqrt{3}]]$ is either $2$ or $4$.
How could we continue? (Wondering)