- #1
ZedCar
- 354
- 1
Homework Statement
Use de Moivre's Theorem to express cos3θ in powers of cosθ
Homework Equations
z^n = [r(cosθ + isinθ)]^n = r^n (cos(nθ) + i sin(nθ))
The Attempt at a Solution
cos3θ = Re(cos3θ +isin3θ) = Re[(cosθ +isinθ)^3]
I've then expanded the brackets using binomial theorem and got;
(cosθ)^3 + 3[(cosθ)^2][isinθ] + 3(cosθ)[(isinθ)^2] + (isinθ)^3
So (cosθ)^3 is the real part and 3[(cosθ)^2][isinθ] + 3(cosθ)[(isinθ)^2] + (isinθ)^3 the imaginary part.
If anyone has any suggestions...
Thank you
Last edited: